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Abstract

Ocean general circulation models (OGCMs) frequently operate at a grid scale larger than

the size of oceanic eddies, therefore eddying effects must be parameterised. One such example

is that of eddy-induced Lagrangian transport. The current method of parameterising eddy-

induced transport assumes isotropic and diffusive behaviour. However several studies employing

numerical models (Kamenkovich et al. 2015, 2009, Berloff et al. 2002), or using satellite altimetry

derived velocity fields or by taking real float data (Rypina et al. 2012) have have demonstrated

Lagrangian behaviour contradicting these assumptions.

We proceed by running a numerical model simulating two differing meandering oceanic

jets. Two novel spatial interpolation methods motivated by the non-divergence property of the

numerical model will be tested and incorporated into a Lagrangian transport model.

Eddying Lagrangian statistics for the two jet regimes will be compared and will verify that

a new non-diffusive, anisotropic parameterisation method will need to be considered. A new

flow based dispersion measure with the aim of capturing sharper diffusivity estimates at the jet

core will be motivated and introduced.

We then run three Stochastic Markov models with the aim of reproducing the observed

Lagrangian statistics and outline the applicability of some further Stochastic models. In the

final chapter, we decompose the flow into Empirical Orthogonal Functions and establish that

eddy-induced meridional transport is largely influenced by small-scale flow variability that

cannot be realistically be captured kinematically. The eddy-induced zonal transport however

can be explained by a Stokes’ drift.
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Chapter 1

Introduction

1.1 The Importance of Oceanic Material Transport, Jets

and Mesoscale Eddies

Being able to effectively understand and parameterise Lagrangian transport is essential in var-

ious applications of ocean modelling as lateral material transport influences various oceanic

and atmospheric processes. It has been shown that mixing can affect large-scale ocean pro-

cesses such as the Meridional Overturning Circulation (MOC) (Marshall et al. 2017) as heat is

transported poleward, and so understanding the rate of transport and the nature of transport

pathways is of primordial importance (Thomas et al. 2015, Van Roekel et al. 2009). In turn,

lateral transport affects the accuracy of global climate models (Fox-Kemper et al. 2011) as a

result of the estimation of the rate of ocean uptake of atmospheric tracers, most notably of

heat (Treguier et al. 2017), of Carbon Dioxide (Fox-Kemper et al. 2011, Marshall et al. 2017),

and of the distribution of salinity (Weijer & van Sebille 2014), which also evidentially has an

impact on global ocean circulation. Modelling of oceanic transport is also of interest in other

fields of research outside of global earth system modelling, such as modelling nuclear or oil spills

(Drouin et al. 2019), the distribution of rubbish (Hardesty et al. 2017), or marine life (Everett

et al. 2017).

Jet structures are ubiquitous in the ocean and can be found in every major ocean basin in

24
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the world. Key examples are the Gulf Stream in the North Atlantic, the Kuroshio extension in

the Pacific and the Antarctic Circumpolar Current (ACC) in the Southern Ocean. Each of these

play a key role in transporting and distributing tracers. Jets are largely driven by mesoscale

eddy interaction (Khatri & Berloff 2018, Vallis 2006), and so we cannot fully separate jet-driven

transport from eddy-driven transport. There is two-way non-linear interaction between large-

scale dynamics and mesoscale eddies (Khatri & Berloff 2018, Booth & Kamenkovich 2008).

Kamenkovich et al. (2009) highlights the interaction between the eddying field and the

time-mean field, stating that eddies have two effects on Lagrangian transport that must be

taken into account: the effect that eddies have on the time-mean flow and hence its indirect

effect on Lagrangian transport; and also the transport directly induced by the eddying flow

itself.

Booth & Kamenkovich (2008) establishes a link between mesoscale eddies and the distri-

bution of chlorofluorocarbon in a model of the North Atlantic, and verifies that understanding

the role of mesoscale eddies is essential in understanding the transfer of atmospheric gases.

Brach et al. (2018) found that eddies tend to cause microplastics to concentrate in patches in

the North Atlantic subtropical gyre. In an effort to parameterise eddies in the mixed layer,

Fox-Kemper et al. (2011) found that small-scale oceanic features play an important role in

global ocean climate simulations.

Therefore, in order to understand oceanic Lagrangian transport and its effects on other

ocean processes, it is important to understand how it is driven by small-scale structures, which

are often poorly represented in coarse-grained general circulation models (GCMs).

1.1.1 The Gulf Stream

The subject of the Gulf Stream and its role in assisting or hindering Lagrangian transport has

long been a subject of great interest. The North Atlantic climate is greatly influenced by the rate

at which the Gulf Stream transports tracers eastward and northward (Liu et al. 2018, Thomas

& Zhai 2013, Treguier et al. 2017). Bower et al. (1985) studied the Gulf Stream as a prelude

to Lagrangian studies, establishing that sharp potential vorticity and temperature gradients
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coincided with the jet core, though tracers appear more uniformly mixed in deep waters. This

is in general agreement with later studies that verify, as the potential vorticity gradient weakens

in deeper water, mixing across the jet increases (Bower & Lozier 1994). The role of meander

induced transport has been studied in the context of the Gulf Stream in numerous pieces of

literature, most notably Bower (1991). Closed orbits in between jet meanders are observed

where fluid is trapped and hence dispersion is suppressed. By introducing a perturbation to

the flow, particles are allowed to mix more freely.

Examples of the importance of eddies in tracer distribution is also illustrated by the Gulf

Stream in the North Atlantic. Eddies are diagnosed by regions of significant particle mixing,

and act as partial barriers to transport across their boundaries (Bower & Lozier 1994, Bower &

Rossby 1989). Thomas & Zhai (2013) ran an eddy-permitting model of the North Atlantic to

study the effect of eddies on the variability of the Atlantic Meridional Overturning Circulation

and demonstrate that the eddy contribution is significant. The largest variability is seen at

latitudes at which the Gulf Stream lies.

O’Dwyer et al. (2000) argues that the distribution of potential vorticity plays a significant

role in float dispersion in the North Atlantic, in particular, near the Gulf Stream where the

potential vorticity is nearly uniform, the dispersion is strongly isotropic. It appears that floats

spread preferentially along PV contours.

Liu et al. (2018) demonstrates that Lagrangian Coherent Structures (LCS), such as vortices,

persist in the Gulf Stream and are strongly associated with surface transport and mixing. They

can transport fluid over long spatial and temporal periods, before they are reabsorbed by the

Gulf Stream. They also demonstrate that the inhomogeneity associated with Gulf Stream

Lagrangian transport is linked to entrainment and detrainment of fluid due to jet meanders,

as was strongly suggested by the kinematic model written by Bower (1991), and also due

to the pinching of said jet meanders and the vortices shed as a result. The nature of the

meandering Gulf Stream jet varies as we travel downstream. Near the Gulf Stream separation

point at Cape Hatteras, there is very little cross stream mixing. Downstream, however, the

Gulf Stream develops strong meanders and the potential vorticity gradient associated with the

jet core breaks, to form rings (Waterman & Hoskins 2013, Liu et al. 2018). Fig. 1.1 illustrates
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this meander pinching and vortex shedding. These are phenomena that will be studied in this

thesis.

Figure 1.1: A schematic illustrating the two different jet regimes seen in the Gulf Stream as
described by Liu et al. (2018) and Waterman & Hoskins (2013). Courtesy of Liu et al. (2018)

1.1.2 The Southern Ocean and the ACC

The Southern Ocean is unique as it is the only continuous ocean basin, i.e. it has no boundaries.

It also connects other ocean basins, so is an important source of global tracer transport and is

dominated by the ACC, which is a largely zonal jet circumnavigating the Antarctic continent.

Hence, the ACC is the only continuous jet-like structure in the ocean. It has been shown that

jets split, merge and move. Jet properties, such as strength, meander or width, may vary. This

variability is largely driven by varying topography and mesoscale eddies.

Similarly to the Gulf Stream, it is of interest to understand whether the ACC acts as

a barrier or blender to transport, and to understand where eddy mixing is enhanced; near

the jet core or on its flanks. Ferrari & Nikurashin (2010) and Naveira Garabato et al. (2011)

demonstrate that the ACC acts to suppress meridional eddy-induced mixing across the jet core,
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except in regions of significant topography, and hypothesise that enhanced eddy mixing north

of the ACC is a result of reduced mixing across the jet core. The suppression of eddy-induced

cross-jet mixing, they suggest, is driven due to their finding that eddies propagate at a speed

proportional to, but slower than, the mean flow.

By using a Lagrangian framework, Spence et al. (2014) was able to identify transient

mesoscale eddies as having a role in transporting fluid away from the Southern Ocean. This

clearly will have an effect on the ocean storage of heat or salt, and may affect global climate

change, due to heating polar waters.

1.2 Diffusivity Estimates

Lagrangian diffusivity estimates broadly fall into three categories: particle, effective and tracer

diffusivity. This thesis will primarily concern single particle statistics, but it is worth verifying

the agreement between the different measures. We will briefly describe the three estimates here,

before reviewing literature that reconcile the different estimates. Further details of diffusivity

definitions are given in chapter 4.

Effective diffusivity, otherwise known as Nakamura diffusivity (Nakamura 1996), concerns

the distortion of tracer contour lines via chaotic advection. It has typically been applied to

the Southern Ocean. This is because it only provides contour averaged measures, as opposed

to a two-dimensional tensor. The ACC is almost purely zonal with monotonic meridional

gradients, hence their effective diffusivity can be interpreted as the meridional diffusivity or

cross-jet diffusivity, though Abernathey & Marshall (2013) did estimate the effective diffusivity

in a simplified version of the Eastern Pacific by using a zonally averaged-mean velocity and

converting the domain into a zonally-periodic channel.

The tracer eddy diffusivity K is defined as follows:

v′C ′ = −K∂C

∂y
, (1.1)

where v′C ′ is the cross-current tracer flux and ∂C
∂y

is the mean cross-current tracer gradient.
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The tracer diffusivity can be estimated either from Lagrangian or Eulerian estimates. Single

particle diffusivity estimates are calculated from Lagrangian particle tracking experiments.

There has historically been disagreement between diffusivity estimates. Lagrangian esti-

mates are often found to be several orders larger than the tracer-based estimates. Marshall

et al. (2006) calculated Nakamura effective diffusivities in the southern ocean and they were

found to be much smaller than those found using Lagrangian methods in Sallee et al. (2008).

Riha & Eden (2011) compares Lagrangian and Eulerian diffusivity estimates, and Klocker,

Ferrari, Lacasce & Merrifield (2012) expands on this work by performing a quantitative com-

parison of tracer-based, particle-based and effective diffusivities calculated from particles and

tracers numerically advected by a velocity field estimated in the South Pacific. They verify

that there is agreement between the three estimates, as long as they are calculated over the

appropriate time scale. Klocker, Ferrari, Lacasce & Merrifield (2012) also include two-particle

dispersion derived diffusivity estimates in their analysis. The effective diffusivity is proportional

to the two-particle dispersion at early times. However, at later times, the eddy driven mixing

breaks down area conservation between tracer isolines. Though at latter times, the effective

diffusivity agrees with the single particle diffusivity.

Both studies, (Riha & Eden 2011, Klocker, Ferrari, Lacasce & Merrifield 2012) conclude that

Lagrangian diffusivities have often been over-estimated in the literature because Lagrangian

particles in meandering chaotic jets, exhibit a negative lobe in the Lagrangian velocity autocor-

relation function. This negative lobe is often associated with trapping of particles by coherent

jets. Lagrangian studies based on surface drifter data often don’t have long enough time series

(see (Lumpkin et al. 2002, Lumpkin & Pazos 2007) and references therein), and therefore the

Lagrangian statistics estimated beyond this negative lobe are considered to be noisy.

Furthermore, there are two methods of calculating the single particle diffusivity, one from

the Lagrangian velocity variance, and the other from the dispersion. Riha & Eden (2011)

compares the diffusivity of these two estimates, and finds that the dispersion derived diffusivity

better captures the meridional cross jet diffusivity suppression, though stops short of explaining

why. This will be discussed in greater detail in Chapter 4, where we also conclude that the

dispersion derived estimate will be the diffusivity of choice.
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1.3 Suppression of Cross-Jet Diffusivity

Several studies have demonstrated that eddying, meandering jets cause suppression of across-

jet eddy diffusivity. As already mentioned, the ACC exhibits such suppression that cannot be

explained by eddy kinetic energy alone, as the diffusivity is smaller around the jet core, where

the eddy velocity is at its greatest, than on it’s flanks.

Strong PV gradients have long been associated with mixing barriers (Haynes et al. 2007,

Greenslade & Haynes 2008). Haynes et al. (2007) expands on the work done by Pierrehumbert

(1991), by considering both a perturbed kinematic model of a meandering jet, and a similar

dynamical model with a topographic forcing to which a perturbation is applied. Consistent

with Pierrehumbert (1991), as the perturbation is increased, the transport barrier coinciding

with the jet breaks. However, Haynes et al. (2007) also finds that this increased perturbation

also results in an increased homogenisation of PV. Furthermore, the perturbation threshold at

which the transport barrier breaks is higher in the dynamical model in which PV is conserved,

than for the kinematic model, implying that strong PV gradients directly increase the strength

of transport barriers.

More recently, the relationship between the mean flow and eddy propagation speed and

cross jet mixing suppression was explicitly defined. Ferrari & Nikurashin (2010) demonstrated

just this using an analytical approach in which the cross jet tracer derived diffusivity was

analysed. By deriving an analytic expression for the diffusivity for a surface QG model, that

was forced by a uniform zonal flow and a stochastically forced eddy field that can be seen as

propagating waves, it was found that meridional mixing experienced greater suppression at

the surface due to a closer agreement between the zonal flow speed and the eddy propagation

speed. It is also found that when the zonal flow speed and eddy propagation speed are the

same, the diffusivity is proportional to the eddy kinetic energy times the eddy decorrelation

time-scale, which is consistent with the mixing length argument (Klocker & Abernathey 2014,

Prandtl 1925).

The results presented in Ferrari & Nikurashin (2010) have been further verified by successive

studies. Klocker, Ferrari & LaCasce (2012) also confirm the results hold by performing a similar



1.3. Suppression of Cross-Jet Diffusivity 31

analytic study but for the single-particle derived diffusivity. This result is confirmed using the

same velocity field as in Klocker, Ferrari, Lacasce & Merrifield (2012), and was apparent by

the exhibited negative lobe in the Lagrangian autocorrelation function. They also further

argued that care must be taken when calculating the Lagrangian particle derived diffusivity.

By integrating the the first zero crossing in the Lagrangian velocity autocorrelation function,

this would be equivalent to taking the maximum diffusivity. Simulations were run with the

mean flow and with the mean flow removed. It was found that the diffusivity with the mean

flow removed was maximized in the ACC jet core region, consistent with the mixing length

argument. Suppression of mixing around the ACC jet core has further been confirmed by

Abernathey & Marshall (2013).

Riha & Eden (2011) demonstrates that by removing the zonal mean flow from the velocity

field, in an attempt to estimate a converged zonal diffusivity, there is no longer an increase in

diffusivity in the vertical direction. They say this implies that removing it results in further

break down of the meridional barrier to transport.

While the above studies are mostly focussed on the Southern Ocean and the ACC, Klocker

& Abernathey (2014) verifies the results presented in Ferrari & Nikurashin (2010) but more

generally. They also state, that in the absence of suppression effects caused by the mean flow,

the diffusivity can be expressed as:

K = Γ
√

2ELmix. (1.2)

where Lmix is the mixing length, E is the eddy kinetic energy and Γ is the mixing efficiency,

in agreement with the classic mixing length arguments. The two arguments: mixing length

theory and cross-jet mixing suppression can then be combined to produce a more realistic

diffusivity.

However, is cross-jet diffusivity suppressed when jets are not purely zonal? As mentioned

previously, studies examining the relationship between eddy propagation speed, zonal mean

flow speed and cross-jet diffusivity have largely focused on the ACC due to its’ almost purely

zonal orientation. However, many eddying jets, notably the Gulf Stream, are often not zonal.
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Boland et al. (2012) compares transport in non-zonal jets. By introducing sloped topography

to a two-layer QG model, non-zonal tilted jets are allowed to form and cross over PV gradients.

Therefore, the PV gradients typically associated with strong mixing barriers are no longer

aligned with the jets. By estimating transport using effective diffusivity, it was found that

non-zonal jets are weaker barriers to transport due to this crossing of PV gradients. Smith

(2007) considers the extreme case with a completely meridional mean flow and also finds that

across-jet mixing is increased due to the dispersion of non-zonal shear.

In section 2 of Nakamura (2008), the relationship between the transport barrier geometry,

defined as a minimum in the effective diffusivity, and the distribution of tracers is studied.

For a non-forced 1D diffusion-reaction equation (which would just resemble the 1D diffusion

equation), the effective diffusivity is found to be inversely proportional to the tracer gradient.

That is, where the tracer gradient is large, the effective diffusivity is small. If we consider the

tracer to be PV, then this is in agreement with the theory that sharp PV gradients correspond

with diffusivity suppression. For a bounded and forced diffusion-reaction equation, weaker

tracer gradients were found surrounding the barrier region, which is again consistent with the

results found in Ferrari & Nikurashin (2010), Haynes et al. (2007).

From the studied literature, there is agreement that jets act as a transport barrier across its

core, and that the extent to which this is the case is driven by the sharpness of PV gradients and

the relative speed of eddy propagation to the zonal mean velocity. These are two phenomena

that will be further discussed in this thesis.

1.4 Current Parameterisation Approach

Currently, most ocean general circulation models (OGCMs) don’t operate at a sufficiently fine

grid resolution to be able to model eddy effects. Since eddies play a significant role in tracer

transport, arguably over the time-mean circulation in regions where eddies are highly ener-

getic (Kamenkovich et al. 2015), these OGCMs will incorrectly approximate material trans-

port; therefore eddy-induced transport processes must be parametrised. Current transport

parametrisations are based on down-gradient diffusion as described in Taylor (1922). This as-
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sumes that Lagrangian particles behave according to a random walk model and so material

transport is assumed to be

1. homogeneous,

2. isotropic,

3. and diffusive.

However, evidence provided both from direct physical observations from subsurface floats,

buoys and satellite altimetry and from numerical experiments suggest that this is not in fact

the case.

1.5 Studies that Challenge this Approach

We have already discussed papers that find suppressed cross-jet mixing in oceanic jets, such as

in the ACC (Ferrari & Nikurashin 2010, Naveira Garabato et al. 2011) and in the Gulf Stream

(Bower & Lozier 1994). This implies that there is anisotropy between cross-jet and along-jet

Lagrangian transport.

Rypina et al. (2012) analysed results from two different data sets of passive tracer trajec-

tories in the North Atlantic: one was from data obtained from neutrally buoyant subsurface

floats, and the second was obtained from near surface currents estimated from satellite altime-

try data. Single-particle dispersion was used to quantify particle spreading and transport, and

hence construct ‘spreading ellipses’ as displayed in fig. 1.2. It was found that dispersion is

significantly inhomogeneous and anisotropic. Considerable anisotropy was demonstrated in the

vicinity of the jet core of the Gulf Stream. Furthermore, anisotropy was found to be greater in

the subtropical than subpolar gyre.

However, relying only on physical observations in order to analyse transport presents nu-

merous problems. Firstly, data is spatially sparse and resources are limited, so limited data can

be retrieved. In particular, certain parts of the ocean may be infrequently explored by floats or

drifters. Furthermore, data in time is also sparse, particularly in the case of many subsurface
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Figure 1.2: Spreading ellipses in the North Atlantic due to the eddy-only velocity field ap-
proximated using satellite altimery. They are calculated from diagonalising the single particle
dispersion tensor. The green line indicates the core of the Gulf Stream. Taken from Rypina
et al. (2012)

floats (e.g. ALICE), since they have to rise to the surface periodically in time for their location

to then be determined by a satellite (LaCasce 2008).

As the time lag tends to infinity, the diffusivity coefficient will tend to a constant, however

the asymptotic limit may be so large that particles leave the region of interest (Davis 1987,

Ying et al. 2019). This is an issue which will be addressed in this paper. As a result, obtaining

datasets big enough to calculate accurate statistics is an expensive and perhaps impossible task.

Therefore we must use numerical models in order to obtain a larger and more complete data

set of trajectories.

Chen & Waterman (2017) followed the methodology of Rypina et al. (2012). They verified

the data-driven results found in Rypina et al. (2012) in a numerical setting by advecting particles

in a barotropic QG model of an idealised Western Boundary Current (WBC). Similar such

ellipses were plotted, verifying anisotropic spreading with zonally elongated ellipses observed

upstream due to cross-stream mixing suppression.

Kamenkovich et al. (2015) used a double-gyre oceanic model to study the origins of anisotropic

transport in the North Atlantic and found that it isn’t the anisotropy in the velocity tensor that
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causes anisotropic behaviour, but the difference in correlation time-scales. Kamenkovich et al.

(2009) further verifies eddy-induced anisotropic transport and suggests that the anisotropy

could be due to the zonally-elongated and hence anisotropic eddy shapes. Such eddies are

expected to result in predominantly zonal Lagrangian velocities.

In an attempt to derive models more suited to the non-diffusive behaviour of eddy-induced

transport, a selection of papers, Berloff et al. (2002), Berloff & McWilliams (2002) and Berloff

& McWilliams (2003), examined the consequences of using higher order Markov models as

transport models. They relate the issue of the poor parametrisation of eddy-induced trans-

port with the assumption that Lagrangian trajectories exhibit immediate memory loss. It is

assumed that the Lagrangian velocity de-correlates immediately. Berloff et al. (2002) generated

numerical simulations of material transport by deploying floats in the model and studying cer-

tain transport properties. They found, using the power law fit for the single-particle dispersion

tensor D to time t:

D ∼ tα, (1.3)

that generally transport was non-diffusive and there exist regions of sub-diffusivity and

super-diffusivity. The zonal and meridional contributions to α also demonstrated significant

anisotropy. A diffusive model, that is a Markov-0, model was found to be insufficient at

capturing the Lagrangian behaviour. They found that at least a Markov-3 model is needed

in order to capture super-diffusive behaviour. This will be further elaborated in chapter 6.

1.6 Layout of Thesis

In chapter 2 we will describe the dynamical model used to generate a realistic but simple

oceanic meandering jet. Different parameter regimes will be described in order to simulate jets

motivated by those illustrated in fig. 1.1. Chapter 3 outlines the transport model used to advect

particles using the dynamical model velocity field. It will also test and verify the accuracy of

two novel spatial interpolation methods. Chapter 4 outlines the resulting Lagrangian statistics
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that can diagnose transport and will be used in chapter 6. It will also explore a new flow based

dispersion measure motivated by O’Dwyer et al. (2000). This chapter will be used to verify

non-diffusive and anisotropic transport. Chapter 5 will decompose the flow field into empirical

orthogonal functions as a motivation behind building a kinematic model that captures eddy-

induced advection. Finally, Lagrangian statistical parameters will then be used to explore the

validity of different stochastic models in chapter 6.



Chapter 2

Dynamical Model

2.1 Quasi-Geostrophic Model

The dynamical model is a two layer quasi-geostrophic (QG) model on a β-plane in a doubly-

periodic domain (Vallis 2006, Berloff et al. 2011). Fig. 2.1 displays a schematic of the model.

The following assumptions are made:

1. The Rossby number is assumed to be small. That is, ε = U
fL
� 1, where U is the

horizontal velocity scale, L is the horizontal scale and f is the Coriolis parameter.

2. The Boussinesq approximation is assumed, that is density variations between isopycnals

are assumed to be small. Referring to figure 2.1, ∆ρ = ρ2 − ρ1 � ρ1, ρ2

H2

H1 ρ1

ρ2

Figure 2.1: Schematic of the two layer quasi-geostrophic model where ρk, k = 1, 2 are the layer
densities and Hk are the resting layer depths.

37
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3. Hydrostatic balance is assumed : ∂ρ
∂z

= −ρ0g.

4. β-plane approximation, that is f = f0 + βy and variations in the Coriolis parameter are

taken to be small, so [βy] ∼ εf0.

5. Time scales advectively, T ∼ L/U = 1/εf .

6. No variations in layer thickness, i.e. rigid lid assumption.

7. The advective derivative is taken to be D/Dt = ∂/∂t+ ug∂/∂x+ vg∂/∂y.

The governing equations are:

D1

Dt

(
∇2ψ1 − S1(ψ1 − ψ2)

)
+ βv1 = ν∇4ψ1, (2.1)

D2

Dt

(
∇2ψ2 − S2(ψ2 − ψ1)

)
+ βv2 = ν∇4ψ2 − γ∇2ψ2, (2.2)

where the subscript 1 denotes the top layer, and 2 the bottom, Sk are the stratification pa-

rameters: Sk = f 2
0 /g

′Hk and g′ = ∆ρ/ρ1 is the reduced gravity, ψk are the velocity stream

functions, vk are the meridional velocities, ν is the viscosity and γ is the bottom friction. The

flow is forced by a uniform zonal velocity U0 in the top layer.

The potential vorticity anomalies can be expressed in terms of the stream function by

elliptic equations:

q1 = ∇2ψ1 − S1(ψ1 − ψ2), q2 = ∇2ψ2 − S2(ψ2 − ψ1). (2.3)

As the velocity is non-divergent, the velocity components are expressed as follows:

ui = −∂ψi
∂y

, vi =
∂ψi
∂x

. (2.4)

The elliptic inversion problem (2.3) can be solved given the mass constraint condition as de-

scribed in McWilliams (1977):

∂

∂t

∫ ∫
(ψ1 − ψ2)dxdy = 0. (2.5)
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In order to solve the PV inversion problem, we decouple the potential vorticity anomalies,

expressing the stream function in terms of barotropic and baroclinic modes:

φ1 =
H1ψ1 +H2ψ2

H2 +H1

, φ2 = ψ1 − ψ2, (2.6)

where φ1 is the barotropic mode and φ2 is the baroclinic mode. Furthermore, let

q̃1 =
H1q1 +H2q2

H1 +H2

, q̃2 = q1 − q2. (2.7)

By calculating q1−q2 and (H1q1+H2q2)/(H1+H2), we obtain decoupled Helmholtz and Poisson

equations:

q̃2 = ∇2φ2 − Sdφ2, (2.8)

q̃1 = ∇2φ1, (2.9)

where Sd = (L/Rd)
2 and Rd =

√
g′H1H2/(f0

√
H1 +H2) is the Rossby deformation radius.

Equations 2.8 and 2.9 can be solved using fast Fourier transforms. As the domain is doubly-

periodic, and so by construction all variables must be periodic, φk can be expressed in terms

of their discrete Fourier transforms φ̂k:

(φk)i,j =
1

NxNy

Nx∑
n=1

Ny∑
m=1

(φ̂k)i,je
−iknxe−ikmy, (2.10)

where Nx, Ny are the number of grid points in x and y respectively and

kn =
2π(n− 1)

Nx − 1
, km =

2π(m− 1)

Ny − 1
. (2.11)

We can take the Laplacian term by term to find that,

∇2(φk)i,j =
1

NxNy

Nx∑
n=1

Ny∑
m=1

−
(
k2
m + k2

n

)
(φ̂k)i,je

−iknxe−ikmy. (2.12)



2.2. The Numerical Method: CABARET 40

q̃k can also be expressed in terms of their Fourier transforms ˆ̃qk:

(q̃k)i,j =
1

NxNy

Nx∑
n=1

Ny∑
m=1

(ˆ̃qk)i,je
−iknxe−ikmy, (2.13)

hence

(φ̂1)i,j = − (ˆ̃q1)i,j
k2
m + k2

n

, (2.14)

(φ̂2)i,j = − (ˆ̃q2)i,j
Sd + k2

m + k2
n

. (2.15)

Fast Fourier transforms are used to calculate Fourier transforms, ˆ̃qk, φ̂k, and inverse Fourier

transforms, q̃k = F−1(ˆ̃qk), φk = F−1(φ̂k), numerically. Hence, given the potential vorticity

anomalies qk, the stream functions ψk can be calculated.

2.2 The Numerical Method: CABARET

CABARET is a second order, non-dissipative, low-dispersive conservative advection scheme as

described in Karabasov et al. (2009). It consists of three steps: a predictor step, an extrap-

olation step and a corrector step. Firstly let’s demonstrate the idea using a one-dimensional

conservation law:

∂q

∂t
+
∂f(q)

∂x
= 0, (2.16)

on a finite difference grid as shown in fig. 2.2 where discretisation in space is xi+1− xi = hi

and in time is tn+1 − tn = ∆tn. The discretisation does not need to be uniform, though in our

case it will be. Suppose we know q at time tn. The conserved variable q is located at the points

with fractional i indices and the flux variable f(q) is located at points with whole i indices.

Consider the top right hand square in fig. 2.2. The predictor step takes two half time steps

from grid point E to grid point A first using a forward-time centred-in-space approximation,

and then a backward-time centred-in-space approximation:
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Figure 2.2: Finite difference grid on which the CABARET advection scheme is applied. (Taken
from Karabasov et al. (2009))

qC − qE
1
2
∆tn

+
f4 − f5

hi
= 0, (2.17)

qA − qC
1
2
∆tn

+
f1 − f2

hi
= 0. (2.18)

We evaluate f1 and f2 (= f(q1), f(q2) respectively) by extrapolating along the line con-

necting points 5, C and 1 using the midpoint rule:

qC =
q1 + q5

2
. (2.19)

This ensures that the scheme is second-order accurate and non-dissipative.

The final step is the corrector step, which removes spurious backscatter ensuring that the

solution is non-oscillatory. The following flux limiter, is used

q1 = 2qC − q5, (2.20)

if (q1 > max(q4, qE, q5)), q1 = max(q4, qE, q5), (2.21)

if (q1 < min(q4, qE, q5)), q1 = min(q4, qE, q5). (2.22)



2.2. The Numerical Method: CABARET 42

The CABARET scheme is stable for a courant number 0 < C < 1/d where d is the number of

spatial dimensions.

Now let’s apply this to the two-dimensional 2 layer QG model. Let’s express equation 2.1

in the same format as 2.16:

∂qk
∂t

+
∂ukqk
∂x

+
∂vkqk
∂y

= Fk, (2.23)

where k = 1, 2 denotes the layer. Fk is the forcing term representing the β, bottom friction and

viscosity terms:

F1 = ν∇4ψ1 − βv1, (2.24)

F2 = ν∇4ψ2 + γ∇2ψ2 − βv2. (2.25)

Let’s assume that the grid is uniformly spatially discretised with a discretisation of h. As

before, the time step is tn+1 − tn = ∆tn and we assume we know all variables at time tn.

The conserved variables qk are located at the cell centres, with fractional i and j indices.

The flux variables, ukqk, have either fractional i or j indices, and so are located on cell face

centres.

The Courant-Friedrichs-Lewy condition requires that

C =
u∆t

∆x
, (2.26)

therefore the time step is

∆tn = mini,j

 Ch

max
(
| (uq)ni,j+ 1

2
|, | (vq)ni+ 1

2
,j |
)
 , (2.27)

and for the CABARET scheme to be stable, 0 < C < 1/2. First, the predictor step takes a

half-step forward-in-time and centred-in-space approximation:

(qk)
n+ 1

2

i+ 1
2
,j+ 1

2

− (qk)
n
i+ 1

2
,j+ 1

2

1
2
∆tn
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+
(uk)

n
i+ 1

2
,j (qk)

n
i+ 1

2
,j − (uk)

n
i− 1

2
,j (qk)

n
i− 1

2
,j

h
+

(uk)
n
i,j+ 1

2
(qk)

n
i,j+ 1

2
− (uk)

n
i,j− 1

2
(qk)

n
i,j− 1

2

h

= (Fk)
n+1/2

i+ 1
2
,j+ 1

2

. (2.28)

How do we approximate (Fk)
n+ 1

2

i+ 1
2
,j+ 1

2

? Let’s separate the source term into its different compo-

nents:

(Fk)
n+ 1

2

i+ 1
2
,j+ 1

2

=
(
F β
k

)n+ 1
2

i+ 1
2
,j+ 1

2

+
(
F visc
k

)n+ 1
2

i+ 1
2
,j+ 1

2

+
(
F bot
k

)n+ 1
2

i+ 1
2
,j+ 1

2

. (2.29)

In Karabasov et al. (2009) the β component of the source term is approximated using a second

order predictor-corrector scheme. The bottom friction and viscous source terms are approxi-

mated by using second-order approximations of the stream function and its Laplacian. It is

necessary to approximate the source terms using second-order methods in order to preserve the

second-order accuracy of CABARET.

As we know all values at time tn in eq. (2.28), we can find the PV anomaly at the half

time step: (qk)
n+ 1

2 . Therefore, the stream function at the half time step at cell faces denoted

by
(
i± 1

2
, j ± 1

2

)
indices can be found by solving the elliptic inversion problem eq. (2.3).

The cell centre stream functions are used to approximate the velocity components at the

cell faces at the half time step using a centred-in-space finite difference approximation:

(ψk)
n+ 1

2
i,j =

1

4

(
(ψk)

n+ 1
2

i+ 1
2
,j+ 1

2

+ (ψk)
n+ 1

2

i− 1
2
,j+ 1

2

+ (ψk)
n+ 1

2

i+ 1
2
,j− 1

2

+ (ψk)
n+ 1

2

i− 1
2
,j− 1

2

)
, (2.30)

(uk)
n+ 1

2

i,j+ 1
2

= −
(ψk)

n+ 1
2

i,j+1 − (ψk)
n+ 1

2
i,j

h
, (2.31)

(vk)
n+ 1

2

i+ 1
2
,j

=
(ψk)

n+ 1
2

i+1,j − (ψk)
n+ 1

2
i,j

h
. (2.32)

Next we proceed to the extrapolator step. The velocity at the next time step tn+1 is then

extrapolated to the second-order using linear extrapolation. As an example, suppose we wish

to approximate y(x̃) where xk−1 < xk < x̃, then

y(x̃) = yk−1 +
x̃− xk−1

xk − xk−1

(yk − yk−1) . (2.33)

Now apply this to approximate the velocity at the next time level, that is: (uq)
n+1
i,j+ 1

2
where
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tn−
1
2 < tn+ 1

2 < tn+1. Hence

(uk)
n+1
i,j+ 1

2
= (uk)

n− 1
2

i,j+ 1
2

+
tn+1 − tn− 1

2

tn+ 1
2 − tn− 1

2

(
(uk)

n+ 1
2

i,j+ 1
2

− (uk)
n− 1

2

i,j+ 1
2

)
. (2.34)

tn+1 − tn− 1
2

tn+ 1
2 − tn− 1

2

=
2∆tn −∆tn−1

∆tn −∆tn−1
, (2.35)

giving

(uk)
n+1
i,j+ 1

2
= (1 + δ) (uk)

n+ 1
2

i,j+ 1
2

− δ (uk)
n− 1

2

i,j+ 1
2

, (2.36)

where

δ =
∆tn

∆tn −∆tn−1
. (2.37)

The same is done to find the meridional component of the velocity. Now we have the updated

velocities, we proceed to the corrector step and use these to apply the flux limiter, eq. (2.20),

to find the values of the PV anomaly at the cell faces, that is, the flux variables.

Now we have all the flux variables at the time step tn+1 and the conserved variables at tn+ 1
2 ,

a backward-in-time and centred-in-space approximation can be taken to find (qk)
n+1
i+ 1

2
,j+ 1

2
.

2.3 Parameter Regimes

The dynamical model is initially perturbed by an alternating stream function and then spun up

for a period of about 15,000 days until the field has reached equilibrium and the total energy

has stabilised.

By choosing appropriate parameters, the dynamical model produces a meandering jet sur-

rounded by eddying structures. We set:

• the basinscale = 520 km,

• Rossby deformation radius Rd = 25km,

• grid size of 512× 512,
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• layer depths H1 = 1km, H2 = 3km,

• viscosity ν = 1m2s−1,

• β = 2× 10−11m−1s−1,

• and a background eastward zonal velocity in the top layer of U0 = 6cm s−1.

As the Rossby deformation radius is much larger than the grid size of approximately 1km, the

model is able to simulate eddies.

The bottom friction parameter, γ, is varied to produce different jets. The following values

for γ are chosen:

1. 1× 10−8s−1, giving a coherent jet and

2. 2.5× 10−8s−1, giving a latent jet.

Fig. 2.3 shows snapshots of the PV anomaly after an initial spin-up period for the different

parameter regimes.

In the appendix of Rypina et al. (2012), a jet was simulated using the same numerical

model and parameters (with the exception of bottom friction which was set to 0 in Rypina

et al. (2012)) in order to verify that the FFE technique did in fact capture the suppression

of cross-stream material transport. The lack of bottom friction resulted in a jet with a much

greater and more coherent meander than the one in our coherent jet. It more closely resembled

the kinematic model studied in Bower (1991).

Berloff et al. (2011) chose bottom friction values of γ = 10−8, 10−7, 10−6 s−1 to study

multiple alternating zonal jets of varying latency using the CABARET numerical model. The

same values for β, Rossby deformation radius, layer thickness and background zonal velocity

were used. It was stated that a small γ is associated with jets that are strong relative to

the background flow, and that the jet core acts as a transport barrier. At large values of

bottom friction, the zonal jets become invisible in the instantaneous case. In fact, they argue

that bottom friction is the dominant parameter in determining the degree of latency, which is
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defined as the square root of the ratio of the jet PV variance to the eddy PV variance. It stated

that in the small γ regimes, a demonstrable asymmetry was observed between eastward and

westward jets, where the eastward jets were diagnosed by transport barriers, and the eastward

jets corresponded to zones in which there was more PV mixing. For the purposes of studying the

properties of material transport, we are not so interested in the case where there is a complete

instantaneous break down of the zonal jet, as we are still interested in the degree to which

the jet is a barrier to transport. Furthermore, the study focuses on multiple alternative zonal

jets, which do appear latent in the ocean. However, as our focus is only on a single jet (which

can be more coherent in the ocean, particularly when considering WBCs and their eastward

jet extension), we are more interested in smaller bottom friction regimes. Similar parameter

values were also used in Khatri & Berloff (2018), notably with a bottom friction parameter of

2 × 10−8 s−1. So while the ‘latent’ jet in this study is not fully latent, we simply mean it is

the more latent of the two. Simulations were run with larger bottom friction values, but we

established that they didn’t demonstrate enough jet coherence, though the studies carried out

in this thesis could be extended to more latent jets.

Studying the effect jet strength and coherence has on Lagrangian transport is important

in any attempt at parameterisation, as a wide variety of jet behaviours are observed in the

ocean. The two jet regimes are inspired by Liu et al. (2018), Waterman & Hoskins (2013) and

fig. 1.1. Furthermore, it has been found that topography, particularly in the Southern Ocean

can affect jet structure (Chapman & Morrow 2014, Thompson & Salle 2012). Furthermore, the

zonally symmetric structure is particularly relevant to the ACC as it is circumnavigates the

whole Southern Ocean and is also predominantly zonal.

As we simulate the flow forward in time, we see that the meanders in the coherent jet are

more regular and stable, in that the sharp potential vorticity gradient remains intact and in fact

there is little disturbance to the meanders so that sometimes they appear to be propagating

with a constant wave length. This is also consistent with Berloff et al. (2011).

The latent jet however is frequently distorted due to the sharp potential vorticity gradient

being broken. This results in shedding of vortices. We expect that this break will result in a

leaky barrier to transport. However it is important to note that the potential vorticity gradient
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across the latent jet is greater than that in the coherent jet. This is in agreement with Dritschel

& Scott (2011). In this paper, it was shown that vortices aide in PV mixing and hence the

sharpening of the jet, or potential vorticity gradient. We can see that the return flows in the

top layer are much more apparent in fig. 2.4. The jet core also appears wider and more smeared

in the time-averaged sense.

There is however a very marked difference between the two regimes when we focus on the

eddying flow in fig. 2.5. In agreement with Berloff et al. (2011), the greater the bottom friction,

the greater the ratio of the eddying flow to the time-averaged flow, as the magnitude of the

eddying velocity in the latent jet is greater than that in the coherent jet. The jet core is in fact

more visible from the eddy zonal velocity in the latent regime, even in the bottom layer, than

in the coherent regime.

The transition from a sharper jet in the top layer to a broader and weaker bottom layer

yet is consistent with what was found in Greenslade & Haynes (2008). Instead of a two-layer

model, a 20 layer QG model was ran in which effective diffusivities were calculated. The layers

could generally be split into two types: upper layers in which there is are narrower mixing

regions, referred to as surf zones, separated by a mixing barrier; and lower layers which consist

of a single wide mixing region.

Particles will be advected by the transport model detailed in chapter 3 using the velocity

fields outputted by these two parameter regimes, and Lagrangian particle statistics of the two

will be compared.
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Figure 2.3: Snapshots of the non-dimensional potential vorticity anomaly after an initial spin-
up period comparing different parameter regimes. The top row represents the top layer and
the bottom row, the bottom layer.

Figure 2.4: Zonally-averaed and time-averaged zonal velocity (cm s−1) after an initial spin-up
period comparing different parameter regimes. The top row represents the top layer and the
bottom row, the bottom layer.
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(a) Zonal velocity

(b) Meridional velocity

Figure 2.5: Instantaneous velocity components (cm s−1) after an initial spin-up period compar-
ing different parameter regimes. The top row of each Figure represents the top layer and the
bottom row, the bottom layer.



Chapter 3

Transport Model

Particles are advected according to the equation:

dxn(t)

dt
= u(t,xn), (3.1)

where xn(t) is the location of particle n at time t, and u(t,xn) = (u(t,xn), v(t,xn)) is the

velocity at the particle location. This is a continuous equation whereas the velocity field is only

known at discrete grid points. Therefore the velocity field must be spatially interpolated, and

then numerically integrated in time.

Initially, it makes sense to find the velocity by differentiating the stream function using

finite differences e.g.:

ui,j = −ψi,j+1 − ψi,j−1

2∆y
, vi,j =

ψi+1,j − ψi−1,j

2∆x
, (3.2)

where i, j donate the grid point index and ∆x,∆y are the spatial grid spacings. However, an

assumption made by the QG approximation is that the flow is non-divergent, but the resulting

approximated velocities do not necessarily obey this assumption. As a result, after a period

of time, particles that are initially released uniformly across the whole domain converge and

diverge, forming clusters. It is important to prevent this in our particular study, as after a long

enough period of time, the diffusive approximation should be reached. In order to overcome

this problem, an accurate spatial interpolation method must be devised which performs spatial
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polynomial interpolation on the stream function first, before differentiating it analytically to

find the velocity.

The polynomial must be unique and sufficiently smooth to allow differentiation. Hence, a

cubic polynomial approach will be considered. Two different methods will be described and

tested.

Furthermore, the accuracy of the Runge-Kutta time-integration scheme will be tested, and

an optimal time step will be selected.

3.1 Spatial Interpolation

3.1.1 2D-Cubic Interpolation

The idea behind this method is to perform one-dimensional cubic interpolation in each dimen-

sion. Suppose the interpolation point is located at (x, y). Cubic interpolation requires a 4× 4

grid of points as shown in fig. 3.1.

yj−1

yj

yj+1

yj+2

xi−1 xi xi+1 xi+2

(x, y)

Figure 3.1: Schematic of two-dimensional cubic interpolation. The blue dashed lines indicate
the location of four 1-D cubic polynomial approximations calculated at each of the four y grid
points in terms of x. The red dashed line represents the location of the final cubic polynomial
which is expressed in terms of the four blue 1-D cubic polynomials.

Firstly, construct four one-dimensional cubic polynomials in the y direction, that approx-

imate the stream function on the blue dashed lines in fig. 3.1. Then we wish to construct a
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one-dimensional polynomial along the red dashed line that will be expressed in terms of the

above four cubic polynomials. Now we have a polynomial approximation for ψ and can an-

alytically differentiate it to find u and v at (x, y). The four 1-D cubic polynomials in the y

direction are found for each y coordinate once for each time step. The final cubic polynomial

on the red line however must be found for each particle. Details of the derivation are included

in appendix A and the code is given in appendix B.

3.1.2 Bicubic Interpolation

Alternatively to the previous scheme, we construct two-dimensional polynomials of the form

ψ(x, y) =
3∑

n,m=0

anmx
nym. (3.3)

This gives us 16 unknown coefficients anm, therefore we can construct a solvable matrix

equation with a unique solution for the 4× 4 grid as in fig. 3.1. This matrix of coefficients anm

is calculated for each time step for each grid point, however nothing further needs to be done

for each particle except matrix multiplication, which is relatively cheap. As before, we can

now analytically differentiate these polynomials to find the velocity components. Details of the

derivation of bicubic interpolation are given in appendix C and code is provided in appendix

D.

3.1.3 Comparison of Spatial Interpolation Methods

The above two spatial interpolation methods were applied to particles advected using three

different flow fields:

• two equal and opposite plane waves;

• Stommel flow;

• and a stationary jet generated by the dynamical model.



3.1. Spatial Interpolation 53

The first two of these fields have closed streamlines and the third case is defined in a doubly-

periodic domain, therefore, for a perfectly accurate transport model, a particle should return

exactly to its starting position after one full loop. Hence the accuracy can be calculated as the

particles deviation from its initial location after an integer number of loops:

err =

〈
|xi(0)− xi(Ti)|
|xi(0)|

〉
, (3.4)

where xi(t) is the coordinate of the ith particle at time t, 〈·〉 denotes an ensemble average,

and Ti is the time at which the particle has concluded its integer number of loops.

The time integration scheme used is the Euler method, where x(t1) = x(t0)+∆tu(t0), y(t1) =

x(t0) + ∆tv(t0).

Even though these fields are time-independent, so we would only need to work out the poly-

nomial coefficients for one snapshot of data, we will force the code to calculate the coefficients

at each time step to give us an accurate running time.

Two Plane Waves

Two equal and perpendicularly propagating plane waves will produce a grid of eddies. Such a

stream function can be written as:

ψ = A0

(
cos

(
2πkx

Nx

+
2πly

Ny

)
+ cos

(
2πkx

Nx

− 2πly

Ny

))
, (3.5)

where k is the wave number in the x direction, l is the wave number in the y direction,

Nx is the number of grid points in x, Ny is the number of grid points in y and A0 is the wave

amplitude. We wish to generate a field with similar dimensions to the jet produced by the

dynamical model, and also with the same sized grid. This leads us to pick the values A0 = 200

cm2 s−1, Nx = Ny = 512, k = −2, l = 2. The basinscale is 520km, the same as that of the QG

model. The time is non-dimensionalised according to U ∼ L/T where U is the velocity scale,

L is the basinscale and T is the time scale. The resulting stream function and velocity fields

are plotted in fig. 3.2.



3.1. Spatial Interpolation 54

Figure 3.2: Stream function and velocity components of two equal and opposite plane waves
on a 512× 512 grid.

Spatial Interpolation Method Time Step (seconds)
8640 4320 2160 1080

Bicubic Interpolation 0.4115 0.2756 0.2292 0.1519
2D cubic Interpolation 0.3921 0.3069 0.2144 0.1217
No Interpolation 0.3921 0.3069 0.2144 0.1217

Table 3.1: Accuracy of the interpolation methods for a single particle advected for 1,000 days
by the two plane waves in fig. 3.2 using the Euler time integration method.

A single particle is advected for 1,000 days starting from (x, y) = (100, 120) km. The

resulting trajectories are plotted in fig. 3.3. The accuracy of the interpolation methods for

varying time steps are shown in table 3.1 and the running time for varying particle ensemble

sizes are shown in table 3.2.

Stommel Flow

The Stommel flow consists of a single wind-driven gyre in a square ocean domain with a β-effect.

It also exhibits closed streamlines, meaning particles should transcribe a loop. The derivation

Spatial Interpolation Method Numbers of particles
1 40,000 250,000

Bicubic Interpolation 847.632 927.196 1170.908
2D cubic Interpolation 27.672 57.512 201.664
No Interpolation 0.008 7.252 47.204

Table 3.2: Run time (seconds) of the interpolation methods for particles advected for 100 days
by two plane waves with a time step of 8640s using the Euler method.
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Figure 3.3: Trajectories of a particle starting at (x, y) = (100, 120) km advected for 1,000 days
by the two plane waves in fig. 3.2 using the Euler time-integration method. Four different time
steps are compared, and Bicubic, 2D-cubic and analytical spatial interpolation solutions are
compared.
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Figure 3.4: Stream function and velocity components for the Stommel Flow as described in
eq. (3.6).

of the Stommel model is described in Vallis (2006).

ψ = π
(
1− x− e−x/ε

)
sin(πy), (3.6)

is the non-dimensional stream function and x ∈ [0, 1], y ∈ [0, 1]; ε = r/(aβ) � 1, where r is

friction coefficient, β is the Rossby parameter and a is the size of the domain in x. ε controls the

size of the boundary layer. We set ε = 0.04. Furthermore, we set the domain size a = 520km.

As the 2D-cubic interpolation method requires unity grid spacing, eq. (3.6) must be re-scaled

accordingly so that x ∈ [0, Nx], y ∈ [0, Ny]. Fig. 3.4 displays the resulting stream function and

its velocity components.

A single particle is released near the centre of the gyre at (x, y) = (150, 250) km to allow

for maximum running time before the particle reaches the boundaries due to interpolation and

time integration errors. Time steps of ∆t = 8640, 4320, 2160, 1080 seconds are used and the

particle is advected for 10,000 days. The resulting trajectories are plotted in fig. 3.5. The

accuracy of the methods for the different time steps are shown in table 3.3 and running times

are shown in table 3.4.

Stationary Jet

A snapshot of the meandering jet produced by the dynamical model is used to advect particles,

as plotted in fig. 3.6. As the domain is doubly-periodic, in a perfect model, the particle should
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Figure 3.5: Trajectories of a particle starting at (x, y) = (150, 250) km advected for 10,000 days
by the Stommel flow in fig. 3.4 using the Euler method. Figure has the same layout as fig. 3.3.
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Spatial Interpolation Method Time Step (seconds)
8640 4320 2160 1080

Bicubic Interpolation 0.7848 0.6088 0.3821 0.2495
2D cubic Interpolation 0.7887 0.6146 0.3875 0.2503
No Interpolation 0.5610 0.5727 0.4473 0.2858

Table 3.3: Accuracy of the interpolation methods for a single particle advected for 10,000 days
by the Stommel flow using the Euler method.

Spatial Interpolation Method Numbers of particles
1 40,000 250,000

Bicubic Interpolation 908.028 969.096 947.464
2D cubic Interpolation 30.200 28.220 83.164
No Interpolation 0.004 4.248 25.940

Table 3.4: Run time (seconds) of the interpolation methods for particles advected for 100 days
by the Stommel flow in fig. 3.4 using the Euler method.

return to its initial location. We choose to release a particle near the most energetic part

of the jet as this is the area where the velocity is largest and so represents the region where

interpolation would perform the worst across the domain. Fig. 3.7 shows the trajectories of the

two different regimes for different time steps. Table 3.5 shows the accuracy of these trajectories.

Spatial Interpolation Method Time Step (seconds)
8640 4320 2160 1080

Bicubic Interpolation 0.0737 0.0620 0.0591 0.0662
2D cubic Interpolation 0.0489 0.0564 0.0468 0.0333

Table 3.5: Accuracy of the interpolation methods for a single particle advected for 10,000 days
by the stationary meandering jet in fig. 3.6 using the Euler method.

Conclusion

Both methods produce results with reasonable accuracy. However it is important to note that

2D-cubic performs markedly better in the stationary jet case. This is because 2D-cubic has

inherent bias in the y-direction due to the asymmetry of the construction of the four initial 1D

polynomials. Therefore, for fields in which there is larger variation in y, 2D-cubic is expected

to perform better. It remains to test the performance of the 2D-cubic method on a meridional

as opposed to a zonal jet.

For a single particle, 2D-cubic is much faster, whereas for a larger ensemble of particles
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Figure 3.6: Snapshot of the stream function of the coherent meandering jet as in fig. 2.3.

Spatial Interpolation Method Numbers of particles
1 40,000 250,000

Bicubic Interpolation 840.644 957.788 1021.028
2D cubic Interpolation 25.172 27.816 71.560

Table 3.6: Run time (seconds) of the interpolation methods for particles advected for 100 days
by the stationary meandering jet in fig. 3.6 using the Euler method.

the difference is markedly less. For each time step, the coefficients for the four Lagrange cubic

polynomials in the 2D-cubic interpolation case are cheap to calculate. However, calculating the

cubic polynomial coefficients for the bicubic method requires matrix inversion, which is much

more expensive. Though, for each particle in the 2D-cubic case, a further four more coefficients

must be calculated, whereas nothing more is required in the bicubic case. Nevertheless, even

with 250,000 particles, 2D-cubic is faster.

For the size of experiments being carried out, 2D-cubic is the favourable method due to

both its computational cost and improved accuracy in the stationary jet case.
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Figure 3.7: Scatter plot of a particle trajectory starting at (x, y) = (100, 220) km advected for
10,000 days by the stationary jet in fig. 3.6 using the Euler method. Trajectories using four
different time steps are used, and bicubic and 2D-cubic interpolation schemes are compared.
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3.2 Time Integration

3.2.1 Runge-Kutta Fourth-Order Method

The time integration method used in the transport model is the Runge-Kutta fourth-order

method (RK4). It’s a used to solve equations of the form:

dx

dt
= u(x, t), x(t0) = x0,

where x is the unknown we would like to approximate. In our case it is the x-component of

the particle location. u, t0 and x0 are all given. u would be the x-component of the velocity.

Suppose the step-size is ∆t, then

xn+1 = xn +
∆t

6
(k1 + 2k2 + 2k3 + k4) ,

tn+1 = tn + ∆t,

where

k1 = u (tn, xn) ,

k2 = u

(
tn +

∆t

2
, xn +

∆t

2
k1

)
,

k3 = u

(
tn +

∆t

2
, xn +

∆t

2
k2

)
,

k4 = u (tn + ∆t, xn + ∆tk3) .

Hence temporal interpolation is required to approximate u at the half time step: tn+ ∆t
2

. Cubic

Lagrange polynomial interpolation will be used, that is, the 1D version of 2D-cubic interpolation

as described in appendix A.
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3.2.2 Performance of RK4

We will test RK4 on the exactly the same test cases as before, with exactly the same param-

eters, but replacing the Euler method with RK4. We will also force the code to calculate the

polynomial coefficients twice, for the current velocity field and at the half time step to give

accurate running times. Figs. 3.8 to 3.10 show trajectories of a single particle advected by

two plane waves, the Stommel flow and a stationary jet respectively. Tables 3.7, 3.9 and 3.9,

give the accuracy of the trajectories and tables 3.8, 3.10 and 3.12, show the running times for

increasing numbers of particles.

Spatial Interpolation Method Time Step (seconds)

8640 4320 2160 1080

Bicubic Interpolation 0.2463 0.1723 0.1053 0.0650

2D cubic Interpolation 0.0403 0.0403 0.0403 0.0403

No Interpolation 0.0403 0.0403 0.0403 0.0403

Table 3.7: Accuracy of the interpolation methods for a single particle advected for 1,000 days
by the two plane waves in fig. 3.2 using the RK4 method.

Spatial Interpolation Method Numbers of particles

1 40,000 250,000

Bicubic Interpolation 1699.220 1894.40796 2264.292

2D cubic Interpolation 58.564 118.704 399.264

No Interpolation 0.008 29.132 179.916

Table 3.8: Run time (seconds) of the interpolation methods for particles advected for 100 days
by the two plane waves in fig. 3.2 using the RK4 method.
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Figure 3.8: Trajectories of a particle starting at (x, y) = (100, 120)km advected for 1,000 days
by the two plane waves in fig. 3.2 using the RK4 method. Figure has same layout as fig. 3.3.
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Figure 3.9: Trajectories of a particle starting at (x, y) = (150, 250)km advected for 10,000 days
by the Stommel flow using the RK4 method. Figure has same layout as fig. 3.3.
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Spatial Interpolation Method Time Step (seconds)

8640 4320 2160 1080

Bicubic Interpolation 0.0901 0.0595 0.0315 0.0278

2D cubic Interpolation 0.0050 0.0050 0.0050 0.0050

No Interpolation 0.0052 0.0052 0.0052 0.0052

Table 3.9: Accuracy of the interpolation methods for a single particle advected for 10,000 days
by the Stommel flow using the RK4 method.

Spatial Interpolation Method Numbers of particles

1 40,000 250,000

Bicubic Interpolation 1690.640 1752.884 1974.720

2D cubic Interpolation 78.776 109.484 263.016

No Interpolation 0.008 23.936 151.840

Table 3.10: Run time (seconds) of the interpolation methods for particles advected for 100 days
by the Stommel flow using the RK4 method.
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Figure 3.10: Scatter plot of a particle trajectory starting at (x, y) = (100, 220)km advected
for 10,000 days by a stationary jet using the RK4 method. Compares trajectories for particles
advected using four different time steps and compare bicubic and 2D-cubic interpolation.
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Spatial Interpolation Method Time Step (seconds)

8640 4320 2160 1080

Bicubic Interpolation 0.0769 0.0706 0.0509 0.0235

2D cubic Interpolation 0.0015 0.00053 0.000391 0.000353

Table 3.11: Accuracy of the interpolation methods for a single particle advected for 10,000 days
by a stationary meandering jet using the RK4 method.

Spatial Interpolation Method Numbers of particles

1 40,000 250,000

Bicubic Interpolation 1846.956 1964.612 2085.800

2D cubic Interpolation 48.156 81.212 255.496

Table 3.12: Run time (seconds) of the interpolation methods for particles advected for 100 days
by a stationary meandering jet using the RK4 method.

Conclusion

The accuracy gain from using RK4 instead of Euler, is considerable. The accuracy of RK4 is

demonstrated best when comparing the cases where no interpolation is used. For a time step

of 8640 seconds, the accuracy for two plane waves increased from 0.3921 to 0.0403 and for the

Stommel flow, from 0.5610 to 0.0052. That is, the accuracy improved by about an order of

three. 2D-cubic interpolation is accurate to at least order four when comparing with the exact

case when using RK4. We have demonstrated that using 2D-cubic spatial interpolation and

RK4 for time integration produces sufficiently accurate results for use in our transport model.

3.2.3 Choice of Offline Time Step

A sufficiently small time step must be used so that the particle is advected by a distance

smaller than the grid size, and that accuracy is insensitive to a further decrease in time step.

The domain size is 520 km × 520 km, and the grid resolution is 512 × 512, therefore the grid

size is approximately 1km. In the faster jet, the maximum velocity is about 20 cm/s. Hence
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the maximum time step needed is approximately 1000
0.2

= 5000s. This is supported by the results

in table 3.11. For a halved time step from 8640 seconds to 4320 seconds, the accuracy improves

by three times, whereas if the time step is halved again to give 2160 seconds, the accuracy

doesn’t even double, and the improvement is even less for 1080 seconds, demonstrating that

the transport model is increasingly insensitive to a further decrease in time step. This would

suggest that the optimal time step should be between 4320 and 2160 seconds. A time step of

3600 seconds (an hour) is chosen for convenience.



Chapter 4

Analysis of Transport in a QG model

4.1 Background

The first question we must consider is how do we isolate the eddying component of Lagrangian

transport? There are two such ways to do this:

• eddy-only (EO) trajectories, where the particles are advected by the eddy velocity only:

u′(t) = u(t) − u − U0 where U0 is the background velocity and u is the time-mean

velocity;

• full-following-eddy (FFE) trajectories, which takes into account the mean flows ability

to advect particles between eddies. Particles are advected by the full field, the mean

displacement is calculated following the full trajectory and the resulting difference is

cumulatively added. That is, say the particle starts at x0. The particle is advected for

one time step using the full velocity and the resulting displacement dx is calculated: udt =

dx. The contribution from the time-mean and background flow to this displacement is

calculated: (ū + U0)dt = dx̄. Then the new particle location in the FFE trajectory is

x̃1 = x0 + dx − dx̄. This process is then repeated following the full trajectory, i.e from

the location x1 = x0 + dx, and the resulting displacement is added to x̃1.

Rypina et al. (2012) suggested the FFE method (referred to as eddy-following full-trajectory,

or EFFT). The idea behind the FFE trajectories is that, in reality particles are advected by
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the full flow, not the eddying flow, but we wish to calculate the contribution from the eddying

flow to the full trajectory. The mean flow causes tracers to be advected faster through certain

eddying regions. In the appendix of Rypina et al. (2012), the relevance of the FFE method was

verified by testing it on a similar QG meandering jet and found that the EO diffusivities failed

to account for the suppression of mixing across the jet core, which was clearly demonstrated

by Lyaponov exponent maxima on the jet core.

By calculating appropriate Lagrangian statistics across the domain, we can diagnose and

quantify anisotropic and non-diffusive material transport. Here, relevant statistics will be

introduced. Further details can be found in LaCasce (2008), van Sebille et al. (2018) and

Berloff et al. (2002).

4.1.1 Lagrangian Statistics

The first such statistic that will be discussed is single-particle dispersion (SPD):

Dx(t) =
1

N

N∑
n=1

[xn(t)− xn(0)]2, Dy(t) =
1

N

N∑
n=1

[yn(t)− yn(0)]2, (4.1)

where N is the number of particles and (xn(t), yn(t)) is the location of the nth particle at time

t. It measures the ensemble mean spread of particles. Fitting the SPD to time using a power

law, Di ∼ tαi , one can diagnose its diffusive-ness (Berloff et al. 2002):

• if 0.8 < αi < 1.2, transport is said to be roughly diffusive,

• if αi < 0.8, transport is said to be sub-diffusive,

• if αi > 1.2, transport is said to be super-diffusive.

α is found as the gradient of a log-log plot of SPD against time.

The absolute diffusivity, or eddy diffusivity tensor is found as half the time-derivative of

single-particle dispersion:

Ki =
1

2

dDi(t)

dt
. (4.2)
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The diffusivity is used to calculate tracer distributions:

∂c

∂t
+ u · ∇c = ∇ ·K∇c. (4.3)

When estimating the diffusivity, it is important to obtain local estimates, which, when

using this method, can prove problematic, as particles will evidently not remain in the same

geographic region. An alternative method of estimating the eddy-diffusivity was suggested

by Nakamura (1996). It uses area as a coordinate and diffusivity is represented loosely as

mass distributed across tracer contours. The variable that quantifies mixing is the equivalent

length, Le, of tracer contours. Chaotic advection acts to stretch Le. This method provides

instantaneous estimates of diffusivity, and it also does not require any averaging, and hence

would result in less smearing of results. However, Le is a scalar, not a tensor, and so is not

appropriate for cases in which we observe anisotropic transport.

Another issue with estimating the diffusivity, which will be discussed in further detail

throughout this thesis, is the assumption that it is constant. We need to run the transport

model for a significant period of time in order to appropriately calculate K, but sampling error

also increases with time when considering real data. This makes calculating K from float data

troublesome as it is difficult to obtain long enough records (Griffa et al. 1995).

Another measure of interest is the Lagrangian autocorrelation function (LACF), which is

defined as follows:

Ri(τ) =
〈ui(t)ui(t+ τ)〉

〈u2
i 〉

, (4.4)

where ui is the Lagrangian velocity as calculated from the Lagrangian trajectories, and

< · > denotes an ensemble average. We can find the Lagrangian integral time-scale as follows:

T iL =

∫ ∞
0

Ri(τ)dτ . (4.5)

The Lagrangian autocorrelation function represents the memory of a particle, hence for a

diffusive regime we see an immediate decay in R, where R would be a δ-function. Difficulties
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in estimating TL arise in real-world ocean datasets. Data is often too spatially and temporally

sparse. TL could be smaller than the sampling rate. Furthermore, R can oscillate or decay so

slowly it doesn’t reach zero in the observed time range.

The eddy-diffusivity coefficient can also be calculated from the Lagrangian integral time-

scale:

Ki = σ2
iiT

i
L, (4.6)

where σ2
ij is the velocity variance:

σ2
ij =

〈
u′iu
′
j

〉
. (4.7)

We obtain the following alternative relationship for the SPD from Taylor (1922):

Di(t) = 2σ2
ii

∫ t

0

∫ t′

0

Ri(τ)dτdt′, (4.8)

which leads us to a short-time and large-time limit:

Di(t) = σ2
iit

2 t << T iL, (4.9)

Di(t) = 2σ2
iitT

i
L t >> T iL. (4.10)

Therefore there is a separation of time-scales exhibited by Lagrangian trajectories. At

short times, we refer to this as the ballistic regime, and at long times, if the integral of the

LACF converges, particles will spread diffusively. Hence, we are interested in what happens at

intermediate time-scales.
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4.2 Lagrangian Statistics Derived From a Simple Kine-

matic Model

A key result demonstrating the relationship between the background mean flow and eddy

propagation speed was presented in Ferrari & Nikurashin (2010). It was found, analytically,

that meridional cross jet eddy mixing is enhanced when the background mean velocity and

eddy propagation speed was the same. The result was derived for tracer diffusivity, but was

consolidated by Klocker, Ferrari & LaCasce (2012) for the particle derived diffusivity. It does

however remain to be seen what the effect is on the along-jet diffusivity.

4.2.1 The Model

We take a similar approach to Ferrari & Nikurashin (2010), in that we consider a propagating

plane wave with x and y dependence on top of a non-time varying background flow, but for the

purposed of this study, we shall not consider stochasticity as it is not essential in demonstrating

the cross-jet mixing suppression. The eddying stream-function is defined as follows:

ψ′(x, y, t) = A cos(kx+ ly − 2πct), (4.11)

where k and l are the zonal and meridional wavenumbers, A is the wave amplitude and c is

the wave propagation speed. We will consider two types of background flows. The first is the

same as that considered in Ferrari & Nikurashin (2010), where

ū(x, y) = U (4.12)

We will also consider a Gaussian jet,

ū(x, y) = U exp

(
−(y − r)2

2σ2

)
, (4.13)

where r is the centre of the jet, U is its amplitude, or maximum velocity, and σ is the
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standard-deviation of the jet, or spread. The zonal profile of the time-mean zonal velocity

produced by the dynamical QG model much more closely resembles a Gaussian jet, and so a

Gaussian background jet will be more applicable.

We will also only consider the Full and FFE trajectories. EO trajectories do not account

for the influence of the mean flow at all.

4.2.2 The Results

Uniform Background Flow

Firstly, we consider the case where k = l = 2 so we can appropriately examine the relationship

between the zonal and meridional dispersion. We keep U constant and vary c relative to U ,

where U = 6cm s−1. The basinscale is 520 km, the same as for the dynamical model. We plot

the SPD for the full, EO and FFE trajectories in fig. 4.1.

(a) Full SPD (b) FFE SPD

(c) EO SPD

Figure 4.1: Single Particle Dispersion for a propagating plane wave on a uniform background
flow, where k = l = 2 and c is varied. The legend indicates how c relates to U .

As expected, when c = U , the meridional dispersion is quicker, as indicated by the red line,

implying an enhancement of cross-jet diffusivity. Interestingly, the same behaviour is seen in

the zonal FFE SPD, despite the mean flow being only zonal, and the rate of spread is also the



4.2. Lagrangian Statistics Derived From a Simple Kinematic Model 75

same as in the meridional direction (as the eddying stream-function is symmetric in x and y).

This increase in FFE diffusivity is seen in fig. 4.1a in a slightly enhanced full zonal dispersion.

The EO dispersion plot is included just for reference, and as expected, the dispersion is driven

by the eddy propagation speed. The dispersion will scale with c−2, due to integration of the

velocity which is roughly of the form sin (· · · − 2πct). In fact, the mean flows acts to slow

transport where U 6= c.

Furthermore, the SPD curve clearly shows super-diffusive behaviour when U = c, while

when c 6= U , the dispersion is almost completely suppressed. We would expect that with some

stochasticity, particles could be nudged, and so some spread would be seen. But without that

stochasticity, particles just oscillate between plane waves.

The same experiment was run with l = 2k to check the same behaviour occurs. We do not

include the results as they are largely trivial. While the FFE zonal dispersion is slightly faster

than the meridional dispersion, the qualitative behaviour is the same.

Gaussian Background Flow

Now we do the same but with a background Gaussian jet. We define r to be in the centre of

domain, and c is again varied, while U is kept constant. This time, we split the domain into 5

bins in order to capture the jet core, the flanks, and the surf zone.

Firstly, let’s compare the different values of c for the different bins, as plotted in fig. 4.2. As

before, we set k = l = 2, and choose σ ≈ 51 km. This value was chosen so the non-dimensional

σ was 50 and the hence the Gaussian jet was sufficiently sharp. Bins 4 and 5 are not included

as the field is symmetric in y and so exhibit the same statistics as bins 2 and 1 respectively.

Dispersion is consistently largest when c = U/4. This is because, the background zonal velocity

ū decreases away from the jet core, and so will match the wave propagation speed. Where in

the domain this occurs, depends on σ. And hence, in the surf region where there is a negligble

bacgkround flow, the full zonal dispersion for c = U/4 is the most enhanced, as c is closer to ū

in this region.

We compare this to the case where σ is increased by a factor of 4, producing a much wider
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(a) FFE SPD - Bin 1 (b) Full SPD - Bin 1

(c) FFE SPD - Bin 2 (d) Full SPD - Bin 2

(e) FFE SPD - Bin 3 (f) Full SPD - Bin 3

Figure 4.2: Single Particle Dispersion for a propagating plane wave on a Gaussian background
flow, where k = l = 2 and c is varied. The non-dimensional σ = 50. The legend indicates how
c relates to U .
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(a) FFE SPD - Bin 1 (b) Full SPD - Bin 1

(c) FFE SPD - Bin 2 (d) Full SPD - Bin 2

(e) FFE SPD - Bin 3 (f) Full SPD - Bin 3

Figure 4.3: Single Particle Dispersion for a propagating plane wave on a Gaussian background
flow, where k = l = 2 and c is varied. The non-dimensional σ = 200. The legend indicates how
c relates to U .
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more smeared Gaussian jet. The SPD is plotted in fig. 4.3. In contrast to fig. 4.2, dispersion is

enhanced most when c = U . This implies that for zonal jets with a velocity profile resembling

a Gaussian jet, it is not just the eddy propagation speed that drives across and along-jet eddy

transport, but the jet width that also plays a role.

(a) Full SPD (b) FFE SPD

Figure 4.4: Single Particle Dispersion for a propagating plane wave on a Gaussian background
flow, where k = l = 2 and c = U . The SPD in the different bins is compared.

But how does the SPD vary across the jet? To answer this question, we examine the case

where U = c and σ = 200. The SPD is plotted in fig. 4.4. As expected, the dispersion is

fastest in the central bins, and is suppressed elsewhere. This supports the theory presented by

Ferrari & Nikurashin (2010), that mixing is suppressed on the flanks of the ACC. However, it

is important to note that this behaviour clearly depends on how eddy-propagation speed and

the Gaussian profile relate to eachother.

Relationship between eddy propagation speed and average background zonal flow

Can we establish a relationship between the single particle dispersion and the meridionally av-

eraged background zonal velocity? Integrating the non-dimensional eq. (4.13) and normalising

by the interval width between y = ii = N , and y = 0, with r = N/2 gives

〈u(y)〉 =
U

N
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We plot the variation in the average zonal velocity in fig. 4.5. As expected, as σ increases,
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Figure 4.5: Change in the average of the background Gaussian zonal velocity profile against
the non-dimensional σ or standard deviation. U = 6, r = N/2 where N in the non-dimensional
domain width.

the jet becomes broader and hence exhibits less variation across the domain, so the average

tends to U . However, the important thing to note, is to examine the size of σ for an average

zonal velocity of U/4. It appears to be quite close to 50. Fig. 4.2 demosntrates that for a

non-dimensional σ of 50, when the eddy propagation speed is U/4, dispersion is maximised.

Therefore, dispersion is maximised when c = ū.

4.3 Analysis of Standard Lagrangian Statistics

In this section, we calculate and examine single-particle statistics as described at the beginning

of this chapter. 5000 particles are released uniformly in 10 uniform zonal bins in 9 separate

releases separated by 200 days and are advected for 1000 days. Statistics are averaged over

particle ensembles and over the different releases. This is so the statistics hold no dependence

on the time at which particles are released, and

Firstly, let us qualitatively examine Lagrangian transport by observing scatter plots of

particles advected by the two regimes. Fig. 4.6 illustrates how particles spread when released

from the jet core. This bin demonstrates the most noticeable differences between the two

regimes. Notice in the upper right hand plot of fig. 4.6b, that we see a dense patch of particles
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splitting away from the jet. Compare this with the PV anomaly in fig. 4.8b at the same time.

We can identify a vortex responsible for trapping this cloud of particles and advecting them

away from the jet. We hypothesise that, because of this vortex shedding, the latent jet is a

leaky barrier to Lagrangian transport. After 150 days, we can see that the particles have mixed

much more in the latent jet than the the coherent jet, where we can still see some of the jet

structure retained in the scatter plot.

(a) Coherent Jet (b) Latent Jet

Figure 4.6: Snapshot scatter plots of particles released from time = 0 days in the top layer for
the two regimes at 0, 50, 100 and 150 days for bin 5, roughly on the jet core.

4.3.1 Single-Particle Dispersion

The single-particle dispersion for the coherent jet for the three different trajectories in all 10

bins is plotted in fig. E.1 and in fig. E.2 for the latent jet.

Zonal SPD

Bins 5 and 6 are deemed to be the bins closest to the jet core. As expected, the full zonal

dispersion is greatest around the jet core. This is due to an enhanced time-averaged stream

function which is almost purely zonal. There is little change in the eddy-only zonal dispersion

in the coherent jet, however we do see an enhancement of zonal dispersion near the jet core for
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(a) Coherent Jet (b) Latent Jet

Figure 4.7: Same as fig. 4.6 but for particles released in bin 9, in the mixing return flow region.

(a) Coherent Jet (b) Latent Jet

Figure 4.8: Snapshot PV anomaly (s−1) in the top layer for the two regimes at times corre-
sponding to the scatter plots in figs. 4.6 and 4.7.
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the latent jet. If we refer to fig. 2.5a, we can qualitatively see that the coherent eddying stream

function has no zonal structure, as opposed to the latent jet, in which a zonal jet structure can

still be observed, which will result in the zonal transport of Lagrangian particles. The FFE

trajectories do exhibit a slightly enhanced zonal dispersion for both regimes in the top layer

near the jet core. We can conclude, that there is a non-linear interaction between the mean

flow and eddying flow when advecting trajectories, and that there is an effect of shear as a

result of the mean flow, on Lagrangian trajectories.

Meridional SPD

In regards to the meridional dispersion, it is important to note the initial gradient. For bins 5,

6 and 7 in the top layer we see a steeper initial dispersion, which then levels out. Other bins

display a more linear behaviour. This suggests that particles are quickly leaving the bins near

the jet core, and then exhibiting a dispersion similar to the surrounding bins. Therefore it is

imperative that we consider the appropriate time-scale.

This initial growth of SPD also demonstrates the ballistic nature of material transport at

early times. It is easier to verify this by looking at the log-log plot of the SPD against time. In

figs. E.3 and E.4 we have also included the ballistic and diffusive log-log plots for comparison.

Both regimes and all the different trajectories exhibit early ballistic behaviour as expected.

However at different times, the gradient of the log-log plot changes. Zonally, the full and FFE

trajectories consistently exhibit gradients larger than diffusive, and meridionally, less than

diffusive. EO trajectories spread faster than the diffusive regime zonally, however meridionally,

the spreading rate appears much closer to diffusive. We quantify this rate of spreading with α

which is further discussed in section 4.3.4.

The transitional time-scale between ballistic, and non-ballistic regimes, defined in eq. (4.5),

will be discussed in section 4.3.3.

Furthermore, we note that the EO meridional dispersion in the top layer in both jet regimes

increases at a significantly greater rate than for the FFE or full trajectories. This agrees with

what was observed in Rypina et al. (2012), and was alluded to at the beginning of this chapter.
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That is, EO trajectories do not capture the meridional transport barrier properly.

4.3.2 The Lagrangian Autocorrelation Function (LACF)

We calculate the Lagrangian autocorrelation function according to eq. (4.4). Figs. E.5 and E.6

plot the autocorrelation function, R, for the coherent jet. Rx in both the top and bottom layers

rarely reaches zero, which makes calculating an Lagrangian integral time-scale difficult. Even

in the eddying cases, we see a very slow decay to zero. We do however see a faster decay to

zero for the eddying trajectory closer to the jet core.

Near the jet core, Ry is wildly oscillating and exhibits quite a small Lagrangian integral

time-scale. This is in general agreement with Berloff et al. (2002). In fact we often observe a

large first negative lobe. This is typically associated with sub-diffusivity. This behaviour will

be confirmed in section 4.3.4. Super-diffusivity is however associated with a dominant positive

second lobe, and a smaller first negative lobe. Away from the jet, Rx decays so slowly that we

do not observe this behaviour. However, if we focus particularly on the bottom layer closer to

the jet, this behaviour is clearly observed in the coherent jet. There is less oscillation of Rx

around the jet core for the latent jet, implying a larger decorrelation time-scale.

4.3.3 Time Scale

There are two time-scales that we need to consider, the first of which concerns enforcing locality

of the statistics, which we refer to as T , and the second is the Lagrangian integral time-scale

TL defined in eq. (4.5). Chen & Waterman (2017) also perform similar analysis in order to

construct ‘non-locality ellipses’. They carefully construct time integration limits that depend

on the time it takes for the diffusivity to converge. It differs from our method slightly in that

they consider the full diffusivity tensor. Let us first consider the locality time-scale, T .

Estimating the locality time-scale, T

After a certain period of time, Lagrangian trajectories will leave the bin from which they were

released. Therefore, there will be a trade off between the locality of statistics and choosing a
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sufficiently long time-scale in order to capture intermediate behaviour. Furthermore, we would

expect different geographical regions to have significantly different time-scales.

For each bin, we choose the cut off time as the time at which
√
Dy(t) becomes greater than

the width of the bin. This enforces the retention of some locality of statistics.

Fig. 4.9 plots the time-scale across the domain. If the time-scale is plotted as 1000 days,

the true time-scale must be at least 1000 days as this is the total time the particles are advected

for.

Firstly, let’s focus our attention on the coherent jet. In both the top layer and bottom

layer we can see that there is a minimum in the time-scale at the jet core. This would imply

that this region is chaotic with a rapid separation of particle trajectories as a small time-scale

indicates that particles leave the bin quickly.

However, in the top layer for the coherent jet, it is interesting to observe multiple maxima in

the time-scale suggesting an existence of multiple jets. Uniquely, the top layer for the coherent

jet does exhibit zonal velocity maxima on the flanks of the jet core, which supports the idea of

multiple jets, and meridional transport enhancement in the jet core. However, the eddy-only

time-scale does not demonstrate this same behaviour. The emergence of multiple jets will be

examined further in chapter 5. We do not see the same pattern however in the bottom layer,

and the EO time-scale exhibits qualitatively the same behaviour as the FFE and full time-

scales. This would again support the theory that EO statistics fail to capture the transport

barrier and is consistent with the work of Ferrari & Nikurashin (2010) and Rypina et al. (2012).

Interestingly, this is less evident in the latent jet. We appear to have slight maxima in the

mixing regions surrounding the jet, but they aren’t as evident as for the coherent jet. T is also

consistently smaller, implying there is significant Lagrangian mixing in the latent jet. The top

and bottom layer are also qualitatively and quantitatively similar. This can be explained by

studying the zonal velocity profiles. Unlike in the top layer of the coherent jet, there are not

well pronounced velocity maxima on the flanks. Furthermore, the jets are much broader. If

we refer to the work of Ferrari & Nikurashin (2010), we can hypothesise that there is a slower

change in the difference between the zonal velocity and eddy propagation speed, and hence
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mixing efficiency changes less drastically against y.

(a) Coherent Jet.

(b) Latent Jet

Figure 4.9: Time-Scale (days) estimated as the time at which the square root of meridional
dispersion exceeds the bin width. The solid black line is the zonally-averaged time-averaged
zonal velocity. The left column is the top layer and the right column is the bottom.

Estimating TL

The Lagrangian integral time-scale defines the separation of the ballistic and diffusive regimes

as described in expressions eqs. (4.9) and (4.10). However, difficulties arise in estimating this

in highly non-diffusive, especially super-diffusive, regimes, as R(τ) can be highly oscillatory or

may never decay to zero.
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A work around for this problem would be to fit R to an exponential curve, i.e. R ∼ e−at. We

take TL to be a−1. This was the method used in Berloff & McWilliams (2002). The reasoning

behind this, as we shall see in section 6.3 is that for a 1st-order Markov model, which is able to

capture the ballistic time-scale, the resulting LACF is R = e−t/TL . However, in the meridional

direction, the LACF is oscillatory, hence TL will be underestimated in the meridional direction.

This prompts us to consider an alternative function to which to fit R.

Dosio et al. (2005) calculates autocorrelation functions in the atmospheric convective bound-

ary layer and found qualitatively similar autocorrelation functions. In the horizontal, the auto-

correlation was found to decay exponentially, and in the vertical, the autocorrelation function

was found to be oscillatory. It was suggested to fit the oscillatory behaviour to

e−aτ
[
cos(bτ)− a

b
cos(bτ)

]
. (4.16)

The Lagrangian integral time-scale was then calculated to be the time at which R(τ) reaches

to 0.37 = e−1, which therefore assumes an exponential shape prior to the integral time-scale.

However, in order to enforce that R(0) = 1, R is fitted to

e−aτ [cos(bτ)] . (4.17)

Similarly, we fit the meridional FFE LACF to the above function and plot the two curves

in figs. E.7 and E.8 respectively. The corresponding TL is also shown.

In order to verify that we are capturing the separation of the ballistic and intermediate

regimes, we display TL against the log-log plots of SPD against time in figs. E.3 and E.4.

As expected, we consistently obtain a much larger zonal TL than meridional. This is in

agreement with Kamenkovich et al. (2009) who stated that anisotropy in eddy-induced trans-

port was driven by an anisotropic correlation time-scale tensor, as opposed to an anisotropic

velocity variance.
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4.3.4 Power Law Exponent

We calculate the power law exponent, αi, from TL up to T . T will have an enforced minimum

so that we calculate α for a sufficient period of time beyond the ballistic time-scale, though

this will result in some smearing of statistics. αi is plotted in fig. 4.10. αx consistently demon-

strates super-diffusivity in the zonal direction. The zonal FFE dispersion is more noticeably

super-diffusive than the EO dispersion. The Ferrari inspired kinematic model, studying the

relationship between the background flow and the eddy propagation speed also demonstrates

zonal super-diffusivity. While in the latent jet, a minima in αx is seen in the jet core, the

opposite is true for the coherent jet. Judging from the kinematic model, it suggests that in

the latent jet, the maximum mean zonal velocity more closely matches the eddy propagation

speed, while in the latent jet, the eddies are propagating slower relative to the maximal zonal

mean velocity, hence maxima are seen on the jet flanks.

All trajectories are consistently sub-diffusive meridionally in the top layer, but not in the

bottom layer. Despite estimating these values over a longer time-scale, non-diffusive behaviour

is still observed. Evidently, due to the clear non-diffusive trajectory behaviour, approximating a

diffusivity coefficient, which relies on the assumption that diffusivity is constant, is difficult. αy

is also qualitatively similar for both the FFE and EO trajectories, but with EO being larger in

the top layer. This behaviour cannot just be explained using the model described in section 4.2

alone, though FFE seems to exhibit an extra two minima in the coherent jet corresponding

the the return flows. This may be because FFE trajectories are more sensitive to background

velocity changes, as suggested in section 4.2.

4.3.5 Eddy-Diffusivity Coefficients

We calculate the diffusivity according to eq. (4.2), and it is plotted in fig. 4.11 for the three

different Lagrangian trajectories. There are limitations behind estimating the diffusivity as was

alluded to early. Fig. 4.10 clearly demonstrates non-diffusive behaviour, therefore the diffusivity

is not constant in time. The diffusivity is however a best guess estimated between the ballistic

time-scale, TL, and the locality time-scale, T . We do however enforce a minimum to the locality
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(a) Coherent Jet

(b) Latent Jet

Figure 4.10: αi for each bin fitted up to the locality time scale. The solid black line is the
zonally-averaged time-averaged zonal velocity. The left row is the zonal direction, and the right
row is the meridional direction. The top figure of each panel is the top layer and the bottom is
the bottom layer.
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time-scale T when it is not much larger than TL, so that we estimate the diffusivity over a long

enough time period.

Firstly, let us focus on the zonal diffusivity. In the top layer, the full diffusivity unsur-

prisingly captures the jet core with a maxima, this is due to the zonal time-averaged stream

function. The EO diffusivity does not capture it well in the coherent jet, though FFE does show

a slight maximum around the jet. This implies that the mean flow acts to advect particles from

eddy to eddy, accelerating transport. 4.10 shows FFE trajectories are more super-diffusive than

EO trajectories, which would agree with the behaviour seen for zonal diffusivities. The diffu-

sivity profiles also show qualitatively similar behaviours in the top layer as for the power-law

exponent, mirroring this potential relationship between the maximal mean zonal velocity and

eddy propagation speed. FFE meridional diffusivity is consistently less than the EO diffusivity,

supporting the theory that the mean flow acts to suppress mixing, particularly when there is

a mismatch between the eddy propagation speed and zonal background flow, and that this in

fact results in sub-diffusive spreading.

The EO Ky also captures the jet core to some degree, with a slight minimum around the

jet core, and hence is capturing the transport barrier. This minimum is more pronounced in

the latent jet, however it is important to note that Ky is about three times greater than that

in the coherent jet. It is difficult to conclude whether there are diffusivity minima captured by

the FFE estimates, as the diffusivity is mildly oscillatory. It looks as if there may be multiple

jets. It could also be due to smearing of statistics, an issue which will be addressed later.

It is important to emphasise here that due to the need to calculate the diffusivity over a

long time range after the ballistic time-scale, these results will not be entirely local.

Comparing different diffusivity measures

There are two different measures from which we can measure the diffusivity, either from the

single-particle dispersion, or from the velocity variance and Lagrangian integral time-scale.
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We plot the resulting diffusivities for the FFE trajectory in fig. 4.12. As the FFE trans-

port is not technically diffusive, we would not necessarily see an agreement between the two

measures. This is something that we will have to take into account when using the diffusivity

as a parameter in further models.

The difference between the two diffusivities is particularly noticeable for Ky in the top

layer. If we refer to fig. 4.10, Lagrangian transport is significantly sub-diffusive, and hence,

as the dispersion is growing slower than time, when taking the time derivative, it ought to be

underestimated, which agrees with what we see.

4.4 A Flow Based Dispersion Measure

As our flow field is made up of a strongly meandering jet, we expect to see significant meridional

dispersion, just due to the fact that there is significant meridional jet meandering. However,

a particle could remain on the jet core and hence exhibit marked meridional transport, even

though the particle is not moving relative to the flow. This is why we introduce a flow based

dispersion measure. By doing so, we hope to more effectively capture the meridional transport

barrier.

Firstly, we must establish an appropriate diagnostic of the flow that allows us to map

the particle location to its ‘flow relative coordinate’. PV is well known to be a pretty good

diagnostic of transport barriers (Dritschel & McIntyre 2008, Juckes & McIntyre 1987). Dritschel

& McIntyre (2008) argue that multiple zonal jets act as eddy-transport barriers. These zonal

jets form a ‘PV staircase’. As our domain is doubly-periodic, we can think of our domain as

having infinitely many zonal jets and hence forming a ‘PV staircase’.
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(a) Coherent Jet.

(b) Latent Jet.

Figure 4.11: The diffusivity (m2 s−1) calculated using the single-particle dispersion. The solid
black line is the zonally-averaged time-averaged zonal velocity. The diffusivity is calculated over
the time period prior to the Lagrangian time scale. The figure layout is the same as fig. 4.10.
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(a) Coherent Jet

(b) Latent Jet

Figure 4.12: Comparing the diffusivity (m2 s−1) for the FFE trajectories from both SPD and as
σ2
iiT

i
L. The solid black line is the zonally-averaged time-averaged zonal velocity. The diffusivity

is calculated up to the time scale. The figure layout is the same as fig. 4.10.
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Figure 4.13: The zonally-averaged time-mean PV in the top layer for the first two regimes.

The zonally-averaged full PV is monotonically increasing in y, as shown in fig. 4.13, illus-

trating a perturbed PV staircase. This allows us to construct a one-to-one mapping between

the meridional coordinate of particle location, y, and PV. Let’s say the full PV at time t

and (x, y) is ζ(x, y, t) = q(x, y, t) + βy and the zonally-averaged time-mean PV at Y is ζ(Y ).

Initially a particle is located at (x0, y0) ,where the PV is ζ(x0, y0, 0). ζ(x0, y0, 0) = ζ(Y0) for

some Y0. As the map ζ → Y is one-to-one, a unique Y0 can be found, and so the PV-mapped

meridional location of the particle at time t = 0 is Y0. The same process is carried out at time

t = T , giving a PV-mapped meridional location of YT . Hence, the PV-mapped dispersion is

DPV = 〈(YT − Y0)2〉.

Notably, we require the flow diagnostic to be meridionally monotonic to ensure a one-to-one

mapping, for this reason we cannot apply this method to the bottom layer.

As opposed to binning the domain uniformly in space, we bin the domain uniformly in the

zonally-averaged time-mean PV. As a result, regions with high PV gradients have small bin

widths. By doing this, we hope to capture the jet core and boundaries with more accuracy

due to sharper bins that follow the jet structure. We see this in fig. 4.14, where the bins are

clearly much narrower where the jet core is. The bin width is calculated by uniformly seeding

particles and evaluating the proportion of which are allocated to each bin.

Figs. 4.15 and 4.16 compare scatter plots for bin 5 (a narrow bin) and bin 9 (a wide bin).

We are picking up the sharpness of the jet core much more efficiently in fig. 4.15 than for the
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uniform bins. We are clearly seeing a break up of the transport barrier, particularly for the

latent jet. It is also important to note, that as we are binning according to the zonally- and

time-averaged PV, the PV snapshot will not necessarily be meridionally monotonic across the

domain. Just because a particle is in a certain PV bin, this does not imply it will match up

to same spatial bin. To illustrate this, observe the initial scatter plot for the latent jet in bin

9 (fig. 4.16b). We can see a vortex which extends down from the main mixing region. As

there is greater PV mixing in the latent jet, these PV filaments may play an important role in

PV-mapped dispersion.

(a) Coherent Jet (b) Latent Jet

Figure 4.14: Bin width (km) plotted against the release number for the two parameter regimes.
The bin width is calculated by uniformly releasing particles and calculating the proportion that
are binned into the PV bin.

4.4.1 PV-Mapped Dispersion

In 9 releases, with time intervals of 200 days, 5000 particles are released uniformly in each bin

and are advected for 1000 days. The resulting single-particle dispersion for the full trajectories

and PV-mapped dispersion are calculated. Fig. E.9a compares the two dispersion measures for

the coherent jet and fig. E.9b for the latent jet.

There are considerable differences observed between the two regimes. Firstly, let us consider

the coherent jet. Bins 5-7 demonstrate a marked oscillatory behaviour, which is a key symptom

of a meandering jet. These bins are also the narrowest, i.e exhibit the greatest PV gradient. We
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(a) Coherent Jet (b) Latent Jet

Figure 4.15: Snapshot scatter plots in the top layer for the two regimes at 0, 50, 100 and 150
days for particles released in PV bin 5, that is on the jet core.

(a) Coherent Jet (b) Latent Jet

Figure 4.16: The same as fig. 4.15 but for particles released in PV bin 9, in the mixing return
flow region.
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do see a slightly slower initial PV-mapped dispersion growth, which indicates that the particles

are not deviating as much from their PV isolines as much as the SPD suggests. That is, they

aren’t spreading away from the jet core as quickly. Qualitatively, we see a similar behaviour

between the two measures, of a rapid increase in dispersion before levelling out, suggesting that

particles do quickly deviate from their initial location, both in relation to the flow field and in

space. These particles will then enter the surrounding bins 4 and 8. These are the widest bins.

Here, we see a noticeably slower growth for PV-mapped dispersion. This implies less mixing in

this region and may also shed light on why the dispersion levels out in bins 5-7.

We however see quantitatively and qualitatively different behaviour for the latent jet. Re-

stricting our attention again to the jet core, DPV is comparable to Dy, illustrating that particles

are deviating from the PV isoline. We also do not see this initial oscillatory behaviour. This is

in contrast to the mixing region where DPV exhibits much slower growth than Dy.

4.4.2 PV-Mapped Lagrangian Autocorrelation Function

Following the same methodology as for the standard dispersion, we calculate the Lagrangian

Autocorrelation Function, which is plotted in fig. E.10. The PV-mapped R in both regimes,

but particularly in the latent jet, exhibit a rapid decay. They much more closely resemble a

δ-function. Significant oscillatory behaviour is seen in the coherent jet, but hardly any is seen

in the latent jet. We will discuss the implications this has for the time-scale in section 4.4.3.

4.4.3 PV-Mapped Time Scale

Much like with the standard dispersion, we have two time-scales of interest: the locality time-

scale T and the Lagrangian integral time-scale TL. We fit R(τ) ∼ e−aτ where a−1 = TL as we

see quite a rapid decay in the PV-mapped LACF. The resulting curve and integral time-scale is

plotted and displayed with R in fig. E.10. Evidently we see a much smaller ballistic time-scale.

It is worth asking what the actual physical meaning of a PV-mapped LACF actually is,

seeing as the PV-mapped Lagrangian velocity will not be a physical velocity.
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The second time-scale is the locality time-scale T , plotted in fig. 4.17. This is calculated

as a function of the bin width, to account for the varying bin width sizes for the PV-mapped

dispersion. As expected, we obtain much sharper minima and maxima for the time-scale, this

is particularly exaggerated for the latent jet. We are seeing very rapid exit from the bin around

the jet core where the bin is narrow, whereas for the wider bins, the particles may not even

leave the bin during the run time of 1000 days. This further illustrates the sharp barrier to

transport that the jet core provides, where particles quickly diverge. Furthermore, unlike for

the latent jet where there are multiple clear minima and maxima that largely correspond to

zonal velocity maxima and minima respectively, the same behaviour is not seen in the latent

jet. The PV time-scale further illustrates this. The broad time-scale maximum correspond to

a broader jet without return flows.

The PV gradient for the latent jet is marginally larger, and therefore the uniform bins are

most likely further smearing the statistics. The time-scale maxima in the mixing region also

demonstrate how particles are sticking closer to their PV isolines than the SPD suggests. This

can be explained by enhanced PV mixing in the mixing region of the latent jet.

(a) Coherent Jet (b) Latent Jet

Figure 4.17: PV locality time scale (days) calculated for each PV bin compared with the full
meridional top layer time scale for each uniform bin. Calculated the same way as for fig. 4.9.
The solid black line is the zonally-averaged time-averaged zonal velocity.
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4.4.4 PV-Mapped Power Law Exponent

Fig. 4.18 plots the exponent for PV-mapped dispersion for the two regimes and compares it to

the full SPD. We do not see a significant qualitative or quantitative difference between αy for

the two measures, suggesting we still see sub-diffusive spreading. Therefore, the measure that

should explain the difference between observed dispersions is the diffusivity. However there are

a couple of differences to note. Firstly, a small peak in αy is seen in the latent jet for the PV

Mapped trajectories that more or less lines up with the zonal background velocity maximum.

Furthermore, the mixing regions appear to be much more meridionally super-diffusive according

the PV Mapped statistics.

(a) Coherent Jet. (b) Latent Jet.

Figure 4.18: The meridional exponent αy calculated using the single-particle dispersion for
each uniform bin compared with the corresponding PV-mapped αPV for each PV bin. The
solid black line is the zonally-averaged time-averaged zonal velocity. αy is calculated up to the
locality time scale.

4.4.5 PV-Mapped Diffusivity Coefficients

We calculate the PV-mapped Diffusivity as

KPV =
1

2

dDPV

dt
. (4.20)

The results are plotted in fig. 4.19.
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(a) Coherent Jet (b) Latent Jet

Figure 4.19: Comparison of PV-mapped calculated in PV bins and regular full diffusivity
calculated in uniform bins (m2 s−1) for each jet regime.

The PV-mapped diffusivity shows a smaller diffusivity in the mixing regions surrounding

the jet, but it does capture the diffusivity of the jet core particularly sharply. It appears that

the standard diffusivity measure hardly picks up the jet core at all, as the statistics are smeared.

The diffusivity values in the mixing region are much more comparable for the two jet regimes.

We should also note that KPV for the coherent jet is about twice that of the latent jet

around the jet core, as indicated from the top x axis. This is quite surprising as the FFE Ky

values for the two regimes are more comparable. It suggests that the coherent jet is actually

dispersing particles away from their PV isolines more effectively.

4.5 Summary and Conclusion

4.5.1 Standard Lagrangian Statistics

EO vs FFE

Firstly let us compare EO to FFE statistics. FFE trajectories deduct the advection due to mean

flow following the full trajectory, whereas EO trajectories are produced by advecting particles

by the velocity fluctuation only. It is a more relevant method of calculating Lagrangian statistics
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for implementation in a coarse grained OGCM as it considers eddying effects on the full flow,

and FFE trajectories explore the same range of the domain as the full trajectory.

Meridional Statistics

We consistently find that meridional EO dispersion and hence diffusivity is larger in the

top layer and smaller in the bottom layer than the FFE statistics. This is in agreement with

the findings of Kamenkovich et al. (2009), where meridional spreading was found to be greater

in the eddy-only simulations in the upper ocean relative to the full Lagrangian simulations.

Rypina et al. (2012) suggested that the eddying flow acts to disperse particles away from

eddies whereas the mean-flow acts to keep particles in eddies. There is however no coherent jet

in the bottom layer and the magnitude of the mean flow is closer to that of the eddying flow.

In fact, referring to fig. 2.5b, in the latent jet, the eddying flow is greater than the mean flow.

The bottom layer latent diffusivity for EO is quite comparable to the FFE diffusivity, as the

mean flow will have less of an impact due to its smaller magnitude.

In the coherent jet however, there is a larger difference between the EO and FFE meridional

diffusivities in the bottom layer. The meridional eddy velocity is smaller than that in the bottom

layer of the latent jet. Ferrari & Nikurashin (2010) argues that, in the context of the Southern

Ocean, the presence of a strong mean flow acts to suppress eddy-diffusivity across the jet. They

state that, despite the eddying velocity being greater in the ACC, across-stream diffusivity is

smaller. Section 4.2 implies that when the background flow matches the eddy propagation

speed, super-diffusion occurs. This is only relevant for FFE trajectories, as EO trajectories do

not capture this interplay between the mean flow and the eddy field.

Zonal Statistics

The difference between the zonal EO and FFE statistics is less pronounced. In the top

layer, the FFE diffusivity is picking up a slight maximum around the jet core. This implies

that the interaction between the eddying field and the mean-flow results in enhanced zonal

transport, in agreement with section 4.2.

We also see, as was suggested by previous literature, significant anisotropy and non-

diffusivity in our FFE statistics. Zonal dispersion is super-diffusive and meridional dispersion is
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sub-diffusive, in both layers and both regimes, as illustrated by fig. 4.10. This is also in agree-

ment with Rypina et al. (2012), where it was found that around the Gulf stream extension,

anisotropy was more pronounced for the FFE trajectories. Clearly the diffusive approximation

is not appropriate to use to synthetically reproduce our Lagrangian statistics.

Comparison between jet regimes

Another key issue to consider is the difference in Lagrangian transport between the two jet

regimes. Fig. 4.9, that plots the locality time-scale for the two regimes, clearly demonstrates

the difference. Maxima and minima are much more pronounced in the coherent jet than the

latent jet. Particles in the jet core boundary leave the bin incredibly quickly, but remain in

the mixing regions for a long period of time. The time-scale in the latent jet is consistently

small and there is little variation across the domain. This suggests that particles are mixed

much quicker and the jet is not as strong a barrier to transport. If we follow the hypothesis

presented by Ferrari & Nikurashin (2010) and in section 4.2, that the interaction between the

zonal mean flow and the eddy propagation speed is paramount in controlling transport, we can

also conclude that the wider latent jet, lacking pronounced return flows, can also result in more

homogeneous Lagrangian statistic profiles.

However, there are some limitations behind linking the results presented in section 4.2 and

the Lagrangian statistics of the fully dynamical model. Firstly, the dynamical model clearly

has very different zonal and meridional eddy field structures, unlike the kinematic model,

where, apart from any variation in wave number, the structure was symmetric, and zonal and

meridional velocity profiles were the same. Fig. 2.5b suggests that the meridional velocity can

be represented as a row (or more) of propagating eddies that lie on the jet core (or on return

flows or secondary jets), where as the zonal velocity still more closely resembles the meandering

jet. Meridional EO diffusivity is greater than meridional FFE diffusivity, whereas zonal EO

diffusivity is smaller. Furthermore, the FFE zonal transport is super-diffusive, whereas the

meridional transport is sub-diffusive, implying there is an asymmetric explanation other than

eddy-propagation speeds influencing transport. That is, we cannot rely on the studies presented

in Ferrari & Nikurashin (2010) alone. Potentially, it is the presence of large, mostly zonal PV
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gradients that also play a pivotal role. The relationship between PV gradients, eddy propagation

speed an mean flow is something that could be studied in later work. That being said, FFE

diffusivity does still capture the diffusivity suppression on the jet flanks more clearly than EO.

It does however still remain to be seen what the explanation behind the difference between

the magnitude of EO and FFE diffusivities is. We know that eddy propagation speed and the

amplitude of the eddy field will be driving components of EO transport, but what effect do

these have on FFE transport?

4.5.2 PV-Mapped Statistics

Though it is worth noting that these conclusions should be taken with a pinch of salt as the jet

meander may cross several bins, and a single bin can encompass both mixing regions and barrier

regions. We attempt to address statistical smearing by introducing a flow-relative dispersion

method, which we refer to as PV-mapped dispersion. It is important to acknowledge certain

limitations with the PV-mapped dispersion method.

Firstly, the main limitation is that it relies on finding a one-to-one mapping between the

y-coordinate and a flow dependent variable. This is so coordinates can be mapped in both

directions with each providing a unique solution. As a result, it is only really appropriate for

β-plane models, or similar such models where the Coriolis parameter increases with y. If using

a PV coordinate, it can only be used for flows where the PV forms a PV staircase. That is,

the PV gradient is sufficiently sharp near the jet and there are mixing regions around it. As

a result, we can’t introduce a different map for the bottom layer. If we were to employ the

PV-mapped technique to the bottom layer, we would have to use the map obtained in the top

layer. This could still be a relevant thing to do as we can examine dispersion relative to the jet

core which is defined by the PV gradient in the top layer.

Secondly, this method only applies in the meridional direction. Alternatively, if the flow is

tilted, the coordinates would need to be diagonalised, but the method could still only be used in

one direction. Essentially, this method is applicable for any jet dominated flow where the flow

can be diagonalised around the direction of the jet (or jets if the flow consists of alternating



4.5. Summary and Conclusion 103

jets e.g. Berloff et al. (2011)).

The two most illustrative statistics of interest in comparing these two methods are the

PV-mapped diffusivity and the locality time-scale. The PV-mapped and full locality time-scale

are qualitatively similar. There is however marked difference between the two in the latent

jet. Where the full locality time-scale didn’t really capture much variation across the domain,

the PV-mapped time scale indicates very sharp minima at the jet core, and very pronounced

maxima on the flanks. This indicates that particles leave the jet core region in the latent jet

particularly quickly and are then trapped in the flanks for a significant period of time. It also

doesn’t appear to exhibit any evidence of multiple jets.

The PV-mapped diffusivity (fig. 4.19) demonstrates a much sharper diffusivity maximum

around the jet core for both jet regimes. We do however capture a slight minimum in the jet

core surrounded by mixing region maximums in the coherent jet. This suggests that we do

see a barrier in the coherent jet. We however do not capture this behaviour for the latent jet,

instead we see a narrower maximum. KPV in the latent jet is underestimated relative to Ky

away from the jet core. However, we must remember that these bins are not strictly spatial

bins, but PV bins. Therefore, the bin allocation of particles relies on the PV at their initial

location as opposed to their y coordinate. This is demonstrated by fig. 4.16b. Keeping this in

mind, we can infer that away from large PV gradients, particles remain relatively close to their

PV isolines. The meridional dispersion that we observe is due to meridionally moving vortices.

Particles however are not inclined to stick to the PV isoline at the latent jet core and instead

diverge away from it. We cannot, however, conclude whether particles are crossing the jet or

are being entrained away from the jet. By calculating two-particle statistics or by counting

the number of particles that cross the maximum PV gradient similarly to the method used in

Berloff et al. (2002), could provide further insight.

Furthermore, KPV is consistently greater for the coherent jet than the latent jet, despite

there being little difference between their FFE Ky values. This implies that particles are leaving

their PV isolines more effectively in the coherent jet. Could this be due to the lack of coherent

structures away from the jet, so particles are not trapped in regions of more uniform PV?



Chapter 5

Kinematic Models

5.1 Background

Kinematic models have frequently been used in ocean modelling to further understand oceanic

processes. Particularly, analytic Rossby waves and jet fields have been used to advect particles.

Subsequent cross-jet transport and mixing was analysed. These approaches were not taken

with the aim of improving ocean modelling, nor have they been derived directly from ocean

data, but they have been used as simple mechanisms for understanding transport processes,

such as cross-jet transport.

Samelson & Wiggins (2006) documented several kinematic models used in Lagrangian ocean

studies, such as those concerning meandering jets, travelling waves and cellular flows. Western

boundary currents, such as the Gulf stream and Kuroshio extension, have been represented

in kinematic models as meandering jets surrounded by eddies. Bower (1991) re-constructed a

jet in this way. They were able to re-write the stream function in the moving frame allowing

them to calculate trajectories relative to the flow field, similar to our PV-mapped dispersion

methodology. It was found that cross-stream transport was enhanced with increasing depth,

increasing meander amplitude and increasing wave speed. This was a key early kinematic

model, meant to represent the Gulf Stream, establishing that the jet core acts a barrier to

transport where little cross-stream mixing is seen, whereas enhanced mixing is observed on the

jet flanks.

104
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Samelson (1992) furthered this work and found that efficiency of fluid exchange is dependent

on the jet meander frequency. They also found that trying to stimulate across jet mixing was

quite difficult, as opposed to mixing around the jet in the ‘surf regions’.

There have been some attempts to link data-driven kinematic models to Lagrangian trans-

port in an atmospheric setting. Pierrehumbert (1991) introduced kinematic Rossby waves to

help identify atmospheric transport barriers and verified the existence of potential vorticity

barriers. It was also established that tracers released in a chaotic region in a two-dimensional

flow will eventually become uniformly distributed. Kinematic models have also been applied to

the stratospheric polar vortex by Garćıa-Garrido et al. (2017). Their aim was to capture the

break up of the polar vortex, associated with stratospheric sudden warming. The flow field was

decomposed into Fourier components, which were then reproduced analytically. The resulting

kinematic model consisted of planetary waves superimposed on a background mean flow, which

we will see is rather similar to our kinematic flow field.

Kinematic models have already been explored for use as parameterisations in ocean models.

For example, Lacorata et al. (2014) constructed an analytic stream function as a lattice of cells

in order to generate chaotic Lagrangian trajectories, and capture pair dispersion. This was used

as a parameterisation method for sub-grid scale Lagrangian transport in the Mediterranean sea.

The link however has not been made between a data-driven kinematic model and oceanic

Lagrangian transport. This is what we attempt to do in this chapter. We will take a similar

approach to Garćıa-Garrido et al. (2017), in that we will decompose the flow into a series of

dominant patterns which can then be synthetically reproduced. Though instead of Fourier

analysis, we will de-construct the flow field into its dominant empirical orthogonal functions

(EOFs) using principal component analysis and examine the contribution these EOFs make in

driving Lagrangian transport.

5.2 Empirical Orthogonal Functions

Empirical orthogonal function (EOF) analysis is a statistical tool commonly used in oceanog-

raphy and meteorology as a way of decomposing a time series into orthogonal variations. It
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essentially decomposes a flow into independent spatial patterns, which can be ranked according

to how much each pattern contributes to the flow variation. This allows us to reduce the com-

plexity of the field. It has often been applied to sea surface temperature anomalies to identify

modes or signatures such as El Niño (Roundy 2015). However, they have not yet been used to

derive kinematic models or study Lagrangian transport.

The stream function anomaly, ψ(x, t) is stored at Nx × Ny = N spatial grid points at Nt

times. Expressing ψ as a decomposition of orthogonal spatial modes gives:

ψ(xi, tj) =
M∑
m=1

αm(tj)em(xi), i = 1, · · · , N, j = 1, · · · , Nt,

where M is the number of modes, em(xi) are the orthogonal EOFs and αm(tj) represent

the scalar contribution of the corresponding EOF. The spatial covariance matrix is defined as

Cij =
1

Nt

Nt∑
n=1

ψ(xi, tn)ψ(xj, tn), (5.1)

where C is an N × N matrix. However, as N = Nx × Ny = 512 × 512, this would result in a

covariance matrix too large to be stored and calculated. Therefore, we reduce the grid size to

128 × 128. Once the EOFs are calculated, they are then spatially interpolated to return the

approximate EOFs on the 512× 512 grid.

EOFs are the eigenvalues of the covariance matrix. We retain the principal components

αm(tj), which indicate the amplitude of the EOF contribution at each time step, as follows:

αm(tn) =
N∑
i=1

ψ(xi, tn)em(xi). (5.2)

The resulting EOFs are plotted in fig. 5.1 for the coherent jet and fig. 5.2 for the latent.

The corresponding principal components are plotted in fig. 5.3.

The EOFs can be categorised as several distinct patterns:

• zonal bands (modes 5 and 6 for the coherent jet, or 1 and 4 for the latent jet), these will

be referred to as ‘zonal’,
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• alternating zonal jets, (modes 9 and 10 for both regimes), these will be referred to as

‘altZonal’,

• Rossby waves, (modes 1 and 2, 3 and 4 for the coherent jet, and 2 and 3, 7 and 8 for

the latent jet). Rossby waves come in two patterns, those consisting of a wavelength the

width of the domain, and those with a wavelength of half the domain. We will refer to

these respectively as rossby and rossbyHalf.

• and oscillations (modes 7 and 8 for the coherent jet, and 5 and 6 for the latent jet). These

will be referred to simply as oscillations.

Rossby waves come in pairs of EOF modes which represent a single row of alternating

eddies. They can have different spatial and temporal periods associated with them. Similarly,

oscillations are multiple rows of alternating eddies forming a lattice.

Fig. 5.4 plots the contribution of the first 20 EOFs to the total flow variance. We can see

that the first 10 EOFs contribute over 90% of the flow variance in both parameter regimes.

However, we must ask whether they contribute as much to Lagrangian statistics.

The first 10 EOFs for each regime are qualitatively similar, in that they both feature the

above patterns, but appear in different orders of significance. One of note is the zonal jet, it

appears that the zonal jet is much more dominant in the latent jet. We will examine if this has

any influence on zonal dispersion.

The latent jet EOFs also demonstrate some variability away from the jet. That is, the full

length Rossby wave EOFs exhibit some flow variability in the mixing region, and they are not

quite aligned with the jet core, or with the half Rossby waves. Conversely, in the coherent

jet, the Rossby waves and half Rossby waves are aligned with each other and are both aligned

with the jet core. Oscillations also account for a greater proportion of the flow variability in

the latent jet. Does the misalignment of Rossby waves result in the break of the meandering

jet? We should also note modes 9 and 10, which appear to be alternating zonal jets. Do they

explain the multiple minima and maxima observed in chapter 4, in particular, in the locality

time-scale?
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What can the principal components (PCs), plotted in fig. 5.3, tell us about the time variabil-

ity of the EOFs? The rossbyHalf waves are clearly associated with high frequency variability.

The full Rossby waves have a lower frequency. These can largely be thought of a small-scale

variabilities present in oceanic mesoscale eddies. The average variation in amplitude varies

relatively little. Therefore, as we average the statistics in time over multiple releases, the effect

of the average temporal variability of EOFs won’t be present. The oscillatory and largely zonal

EOFs however have lower frequencies and temporal variability.

The structure and order of importance of EOFs in explaining flow variability already raise

some important questions. However, first, we must examine the relationship between EOFs

and Lagrangian transport.

(a) Coherent Jet. (b) Latent Jet.

Figure 5.4: Contribution of the first 20 EOFs to the stream function variance. The first 10
Modes account for about 90% of the flow variance.
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(a) Top Layer

(b) Bottom Layer

Figure 5.1: The first 10 joint EOFs and their PCs for the coherent jet. Modes 1 and 2 makes
up a Rossby wave with a wavelength half that of the domain, and modes 3 and 4 make up a
Rossby wave with a wavelength the whole width of the domain. Modes 5 and 6 are zonal flows,
modes 7 and 8 and oscillations and modes 9 and 10 are alternating zonal jets.
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(a) Top Layer

(b) Bottom Layer

Figure 5.2: The first 10 joint EOFs and their PCs for the latent jet. Can categorise patterns
similarly to the coherent jet. Modes 7 and 8 are half length Rossby waves, modes 2 and 3 are
full length Rossby waves, Modes 1 and 4 are zonal, modes 5 and 6 are oscillations, modes 9
and 10 are alternating zonal jets.
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(a) Coherent Jet (b) Latent Jet

Figure 5.3: Joint layer Principal Components for the two jet regimes corresponding to the
EOFs in figs. 5.1 and 5.2.
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5.2.1 How Many EOFs do we Need to Capture Lagrangian Disper-

sion?

As Lagrangian transport is highly non-linear, just because the first 20 EOFs account for almost

all of the flow variance, it does not mean that they will account for almost all of the Lagrangian

transport, so we need to establish whether it is possible to capture the important Lagrangian

dispersion behaviour using a finite number of EOF. Fig. 5.5 compares the EO SPD with the

SPD of particles advected by the first 10 EOF modes and the first 20 EOF modes for the

coherent and latent jets for bins 2 and 5. Figures for all 10 bins are included in appendix F.

We compare the EOF trajectories with the EO trajectories as the EOFs represent the eddying

field as they are constructed from the stream function anomaly.

Across the domain, particularly in the bottom layer, zonal spreading is captured very well

by the first 10 EOFs and we gain very little by increasing the number of EOFs to 20. We also

see similar patterns in both the coherent and latent jets. In particular, fig. 5.6 demonstrates

that EOFs 1-10 underestimate zonal spreading around the zonal jet and the return flows, and

overestimate zonal spreading elsewhere. By adding an additional 10 EOFs, we don’t see a much

more accurate zonal dispersion in the latent jet, though there is a slight improvement seen in

the coherent jet.

The story is very different for the meridional direction. Increasing the number of EOFs

from 10 to 20 does demonstrate a marked difference in the meridional spreading. Meridional

dispersion is almost always underestimated. This implies that small-scale variabilities play an

important role in enhancing meridional spreading, but less so for zonal spreading. This leads

us to treat the two directions separately. But firstly, let’s try to establish the role of different

EOF patterns in Lagrangian spreading.



5.2. Empirical Orthogonal Functions 113

(a) Bin 2 - Coherent Jet (b) Bin 5 - Coherent Jet

(c) Bin 2 - Latent Jet (d) Bin 5 - Latent Jet

Figure 5.5: Single-Particle Dispersion (km2) against time (days) for each bin for different
numbers of EOFs for the two jets.
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(a) Coherent Jet (b) Latent Jet

Figure 5.6: Compares fractional difference of the SPD of different EOF fields to the EO SPD
at the time-scale. Meridional transport is more poorly captured in the mixing regions. Zonal
transport is under estimated in the jet core and over estimated in the mixing regions.
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5.2.2 Deducing the Role of EOF Patterns in Lagrangian Dispersion.

Pairs of EOF modes, as described previously, are deducted from the full stream function to

construct a new field. Particles are then advected using the FFE methodology. Fig. 5.7 plots

the resulting SPD for the different constructed fields for bins 2 and 5. Figures for all bins can

be found in appendix F.

The pair of EOF modes 1-2 for the coherent jet, which resemble a Rossby wave with a wave-

length of half the domain, seem to account for a significant portion of the zonal and meridional

dispersion. By deducting these EOFs, we see a reduction in zonal dispersion, implying that

these EOFs act to enhance zonal dispersion. In this section we investigate the reasons behind

this.

However, it is important to note that the corresponding EOF pair for the latent jet, EOF

modes 7 and 8, not only are much less dominant modes accounting for less of the flow field

variance, but also account for little of the particle dispersion. For the latent jet, EOF modes 1

and 4, the zonal structures, are much more important. Furthermore, EOF modes 7 and 8 for

the latent jet appear much more smeared than EOF modes 1 and 2 for the coherent jet.
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(a) Bin 2 - Coherent Jet (b) Bin 5 - Coherent Jet

(c) Bin 2 - Latent Jet (d) Bin 5 - Latent Jet

Figure 5.7: Single-Particle Dispersion (km2) against time (days) for each bin where different
EOF pairs are deducted from the full field in the two jets.

5.2.3 Investigating the Role of Half-Wavelength Rossby Waves

It has been suggested that enhanced zonal dispersion is driven by the interaction between zonal

transient eddies and the zonal time-mean flow (Ferrari & Nikurashin 2010, Naveira Garabato

et al. 2011).

The pair of RossbyHalf EOFs have a period of 48 days in the coherent jet and 44 in the
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latent jet; that is, the time it takes to travel a full wavelength of 260km. So in the coherent jet

we have a propagation speed of roughly 6.3cms−1, and in the latent jet, of 6.8cms−1. How can

we relate this to the arguments posed in Ferrari & Nikurashin (2010)? We include the averaged

zonal velocities for each bin, layer and regime in figs. 5.8 and 5.9 for easier reference.

Firstly, whereas deducting the rossbyHalf EOFs in the coherent jet results in sub-diffusive

dispersion, and results in a slower dispersion, this is not the case in the latent jet. In fact, in

bins 4, 5, 6, 7 and 8 removing rossbyHalf waves act to reduce the zonal dispersion in the top

layer for the coherent jet, in the latent jet there is a much smaller reduction in dispersion. The

maximum background zonal velocity is much closer to the eddy propagation speed, and hence

the average zonal velocity will be much smaller, and smaller than the eddy propagation speed,

particular across the region which the EOFs occupy. This smaller difference in dispersion can be

explained using the arguments posed in chapter 4 which say that zonal dispersion is maximised

when the average back-ground zonal velocity agrees with the eddy propagation speed.

In the bottom layer however, where the propagation speed is greater than the background

zonal velocity, the zonal dispersion is enhanced when deducting the rossbyHalf waves, particu-

larly bins 7 and 8 in the latent jet. In bins 7 and 8, the rossbyHalf waves still have a significant

amplitude and hence contribution to the flow field, but if we refer to fig. 5.9, the background

zonal velocity is much smaller than the eddy propagation speed. In chapter 4, when the eddy

propagation speed and background zonal velocity don’t agree, we see sub-diffusive behaviour,

and so in this case, it would make sense that removing the rossbyHalf waves would increase

dispersion instead, as this sub-diffusive effect would be removed. The converse it true when the

velocities match.

It is, however difficult to draw the same conclusions for the meridional dispersion. For

the coherent jet, it is true that meridional dispersion appears reduced in both top and bottom

layers by deducting the rossbyHalf waves, and that this behaviour is less apparent in the latent

jet, in both layers. However, even though the background zonal velocity in the bottom layer

is much smaller than in the top layer for the coherent jet, the reduction in dispersion is far

greater, despite it being of a similar magnitude to the background zonal velocity in the top

layer of the latent jet, where this reduction is meridional dispersion is not seen.
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Bin Average zonal velocity (cms−1)
Top Layer Bottom Layer

1 -7.28 -4.22
2 -7.06 -4.19
3 -3.30 -2.75
4 -0.93 -1.26
5 1.03 2.00
6 12.07 6.88
7 10.60 6.37
8 -0.24 1.37
9 -1.04 -1.33
10 -3.80 -2.85

Figure 5.8: Average zonal velocity for each bin in the coherent jet.

Bin Average zonal velocity (cms−1)
Top Layer Bottom Layer

1 -3.66 -1.37
2 -4.04 -2.82
3 -4.15 -3.00
4 -4.39 -2.05
5 1.74 1.37
6 7.60 4.21
7 5.62 3.78
8 3.16 2.02
9 0.64 0.28
10 -2.50 -1.43

Figure 5.9: Average zonal velocity for each bin in the latent jet.

We therefore hypothesise that the relationship between background zonal velocity and eddy

propagation cannot be the only phenomena controlling Lagrangian transport.

5.2.4 Investigating the role of full-wavelength Rossby waves

Using the same method as for the half-wavelength Rossby waves, we calculate the periods of the

full-wavelength Rossby waves to be 166 days for the coherent jet, and 165 days for the latent

jet. With a wavelength of 520 km (the size of the domain), this gives a propagation speed of

3.63 cm s−1 and 3.65 cm s−1 for the coherent and latent jets respectively. Therefore, this EOF

pair are propagating at approximately half the speed of the half-wavelength Rossby waves.

This EOF pair have very little impact on dispersion in the coherent jet. In the top layer of

the latent jet, there isn’t a significant amount of difference between the effects of the RossbyHalf
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and Rossby EOF pairs. We do see a small amount of zonal dispersion reduction in the bottom

layer of the latent jet when removing the Rossby wave EOFs, similar to the effect of the

rossbyHalf EOFs, but to a smaller degree. We found in chapter 4, reducing the wavenumber

results in similar behaviours, but a smaller dispersion rate. Meridionally, however, we see

enhancement of dispersion. And so, yet again, the arguments given in Ferrari & Nikurashin

(2010) are not enough to explain the observed behaviours.

5.3 An EOF inspired kinematic model

5.3.1 Re-constructing the half-wavelength Rossby waves

We can now construct an analytic kinematic stream function that is derived from our EOFs

that can aptly represent the corresponding parameter regimes. Following the methodology of

Rypina et al. (2007), we can analytically represent a propagating Rossby wave as follows:

ψ(x, y, t) = Asech2

(
y − yc
L

)
cos [k(x− ct)] , (5.3)

where A is the amplitude, L is some length scale that captures the width of the Rossby

wave, yc is the centre of the Rossby wave, k is the wavenumber and c is the propagation speed.

We find different values for the above parameters for the top and bottom layers. We do not

include the variation of the principal components in this kinematic model, as we expect the

effect of the EOF variation over longer time scales to be negligible once we average particle

statistics over several time releases.

We then compare the single-particle dispersion for the resulting kinematic model with the

FFE dispersion in 5.10 for bins 2 and 5. The single particle dispersion for all 10 bins can be

found in appendix F.

As expected, away from the jet core, the Rossby Half waves don’t contribute to the SPD

as the flow field is negligible. For the coherent jet, the Rossby Half wave accounts for most

of the zonal spreading in both the top and bottom layers. Adding the zonal EOF has little
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effect. This is in contrast to the latent jet, where, adding the zonal background flow does have

a significant effect. In fact, in bins 4-8, we get very close to retrieving the FFE SPD with our

kinematic model, which includes the zonal EOF along with the RossbyHalf wave.

In the top layer, the RossbyHalf wave also manages to capture the initial ballistic dispersion

around the jet core before the dispersion curve levels out. As the wave only covers a small area

of the domain, if particles leave this area, they will not be advected at all; if they remain in

the jet core region, the particles will oscillate meridionally due to the wave structure.

This result isn’t too surprising as the zonal EOF accounts for the greatest proportion of

flow variability in the latent jet and the Rossby half waves are actually only the 7th and 8th

most dominant modes, as opposed to the coherent jet where the Rossby half wave were the

most dominant modes. So this suggests there is some relation between the dominance of EOFs

in accounting for flow variability and for Lagrangian spreading.

Now we ask, what is the mechanism that drives this enhanced zonal spreading?
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(a) Bin 2 - Coherent Jet (b) Bin 5 - Coherent Jet

(c) Bin 2 - Latent Jet (d) Bin 5 - Latent Jet

Figure 5.10: Comparing the single-particle dispersion (km2) against time (days) for each bin
for the kinematic field with and without the background flow for the two jets.

5.3.2 Investigating the role of the propagation speed of the kine-

matic model

Now we have an analytic expression for the Rossby half length waves, we can study the impact

of the relationship between propagation speed and dispersion. We use a similar approach to
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that carried out in chapter 4, but instead of the background flow being Gaussian or uniform,

we consider the FFE trajectories of the kinematic model defined in eq. (5.3) with a time-mean

flow of the dynamical model and the background zonal velocity of 6 cms −1. The SPD in bin 6

for the two regimes is plotted in fig. 5.11. We show bin 6 as it is the bin with the maximal time

mean zonal velocity, and hence is considered to be the location of the jet core. We also include

the FFE SPD for the kinematic model of the Rossby half waves for the top layer coherent jet

without the time-mean flow for comparison in fig. 5.12.

Fig. 5.12 and fig. 5.11a are exactly the same, demonstrating that the time mean does not

have an impact on the zonal or meridional phase speed, and so we cannot rely alone on the

arguments presented in Ferrari & Nikurashin (2010). We don’t include the SPD figures for the

other bins for clarity, but the SPD for experiments with and without the time-mean jet are

exactly the same as each other for the other bins as well.



5.3. An EOF inspired kinematic model 123

(a) Coherent Jet

(b) Latent Jet

Figure 5.11: FFE SPD (km s−1) for the analytic Rossby half waves and the time-mean dy-
namical streamfunction in bin 6 in the top layer for the two parameter regimes. The eddy
propagation speeds c are in cms−1

Figure 5.12: FFE SPD (km s−1) for the analytic Rossby half wave and time-mean stream
function (without the background zonal velocity) in bin 6 in the top layer for the coherent jet.

As the relationship between dispersion and eddy propagation speed is not monotonic, it
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implies there may be a critical eddy propagation speed for which dispersion is maximised or

minimised. We investigate for an eddy propagation speed of 4.5cms−1. We choose this value

as zonal dispersion for c = 1.5cms−1 is greater than that for c = 3cms−1, and zonal dispersion

for c = 6cms−1 is greater than that for c = 12cms−1, implying that a critical point lies between

c = 3 and c = 6cms−1. We plot the FFE SPD dispersion for the field consisting of the coherent

regime Rossby half waves, background zonal velocity and time-mean field in fig. 5.13, and we

see that zonal dispersion is enhanced and meridional dispersion is minimised for c = 4.5cms−1.

This does not follow the theory of Ferrari & Nikurashin (2010), as there is a critical value

that suppresses cross-jet mixing as opposed to enhancing it. Where c is the same as the

uniform background flow field, cross-jet diffusivity is enhanced. In fact, sub-diffusive behaviour

is observed, much like when c does not equate the background flow, as observed in chapter 4.

Zonal dispersion however is maximised, displaying the opposite behaviour.

The two differences between the EOF derived kinematic model derived in this chapter and

the Ferrari inspired kinematic model of chapter 4 are the lack of a meridional wave number and

that the background flow is the actual time-mean of the jet. Therefore, as long as there is a

zonal (or meridional) wavenumber, we will see zonal (or meridional) dispersion enhancement.

However, the question that remains to be answered, is what is the relationship between the

critical eddy propagation speed of roughly c = 4.5cms−1 and the other model parameters?

Figure 5.13: FFE SPD (km s−1) for the analytic Rossby half waves, the time-mean dynamical
streamfunction and background zonal velocity in bin 6 in the top layer. The eddy propagation
speeds c are in cms−1. Illustrates how c = 4.5cms−1 represents a critical speed.
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5.3.3 Investigating the role of eddy amplitude of the kinematic model

We compare the zonal FFE SPD for different eddy amplitudes and propagation speeds in

fig. 5.14 for a selection of bins. We do not include the critical eddy propagation speed found in

the previous sections so we can more clearly examine the effect of the eddy amplitude without

the figures being dominated by the critical value of c. However. we find that c = 4.5cms−1 is

a critical eddy propagation speed for the amplitudes investigated in this section. We do not

include the meridional dispersion as the qualitative behaviour is the same for all amplitudes.

A = 526s−1 is the amplitude used for the top layer coherent jet. Increasing the eddy amplitude

appears to effectively broaden the jet, with the FFE SPD dispersion for bin 3 for amplitudes of

526 and 1000 for closely resembling that for bin 5 for amplitudes of 50 and 100. It however does

not change the qualitative relationship of the propagation speed. However, the relationship

between eddy propagation speed and dispersion is reversed either side of the jet, in the so

called surf regions. Furthermore, it does appear that the on the jet flanks, dispersion is either

suppressed on enhanced relative to the jet core, dependent on the eddy propagation speed.
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(a) A = 50s−1, bin 5 (b) A = 50s−1, bin 6 (c) A = 50s−1, bin 8

(d) A = 100s−1, bin 5 (e) A = 100s−1, bin 6 (f) A = 100s−1, bin 8

(g) A = 526s−1, bin 3 (h) A = 526s−1, bin 6 (i) A = 526s−1, bin 8

(j) A = 1000s−1, bin 3 (k) A = 1000s−1, bin 6 (l) A = 1000s−1, bin 8

Figure 5.14: FFE SPD (km s−1) for the analytic Rossby half waves and the time-mean dynami-
cal streamfunction in bin 6 in the top layer for the coherent jet regime, but for different Rossby
wave amplitudes.



5.3. An EOF inspired kinematic model 127

5.3.4 Stokes’ Drift

Introduction

Stokes’ drift is defined as the difference between the average Lagrangian velocity and the average

Eulerian velocity. To the leading order, Stokes’ drift induced motion is periodic, however,

surface gravity waves also induce a net drift (van den Bremer & Breivik 2018b). From an

Eulerian point of view, the drift may appear to be zero, however the periodic circular orbits of

particle trajectories are not closed, and so induce a net Lagrangian drift. The role of Stokes’

drift velocities have frequently been studied in relation to the transport of surface drifters or

tracers. For example, Stokes’ Drift is often described as a major determinant in transport of

plastic debris (Onink et al. 2019). The phenomenon of Stoke’s Drift can also be linked to

Rossby waves. Marshall et al. (2013) studied to effect of westward propagating Rossby waves

and eddies that transport fluid westward via a Stokes Drift.

While the studies above are mostly concerned with waves in which there is a vertical

oscillation of particles, some early studies did consider waves in the (x, y)-plane and their

contribution to Stokes Drift. Thompson & Kawase (1993), Li et al. (1996) study the effect

of equatorially trapped waves on Lagrangian particle trajectories and the subsequent effect of

Stokes Drift. Thompson & Kawase (1993) finds that a Lagrangian drift, opposing the Eulerian

mean, is found in much of the gyre interior in a one and a half layer model of a western boundary

current and is explained using the Stokes’ drift formulation. Particles will exhibit a drifting

circular motion and move west along the equator before reaching the western boundary. It is

concluded that the wave propagation, as opposed to the Eulerian mean flow, play an important

role in determining the mean drift of particles. Li et al. (1996) further expand on this by focusing

on the question of stirring processes, where it is concluded that a single-frequency travelling

wave alone cannot produce chaotic stirring in the interior equatorial ocean. Given that when we

remove the Rossby wave EOFs from the velocity field, that it doesn’t result in a profound effect

on the meridional dispersion, our studies support this theory. Li et al. (1996) in fact indicates

that it is the combination of low frequency and high frequency waves that determine stirring

properties. It is the interaction of different waves that result in chaotic mixing. However, our
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primary concern is the effect of Rossby waves on zonal transport. We do not expect Stokes’

drift due to the single Rossby wave alone to simulate meridional transport. Furthermore, as

the time-mean zonal velocity has been found to have no impact on the qualitative behaviour

of the FFE trajectories produced by particles advected by the kinematic model of the Rossby

half waves, we will not consider the effect of the background flow in this section.

Contribution of Stokes’ Drift to Lagrangian transport

Kamenkovich et al. (2009) argues that enhanced zonal dispersion can be explained by a Stokes’

Drift. We derive the Stokes’ drift for half Rossby waves, as expressed in eq. (5.3), in appendix

G, obtaining the following results for the zonal stokes’ drift uS and the meridional stokes’ drift

vS:

uS =
k

4ω

∂2

∂y2
f 2, (5.4)

vS =
k

4ω

∂2

∂y∂x
f 2. (5.5)

For our half Rossby waves,

f(x, y) = Asech2

(
y − yc
L

)
, (5.6)

and therefore our stokes drift is purely zonal, just as demonstrated in Kamenkovich et al.

(2009). This agrees with our observations in fig. F.5 and fig. F.6 where we see enhanced zonal

spreading due to analytic Rossby half waves. The form of the velocity used to derive the Stokes’

drift resembles that used in Constantin & Villari (2008), except instead of sech2, they used the

exponential, where it was verified that in deep water, using linear water wave theory, particle

trajectories were not closed but exhibited a net drift. Though, similarly to most other Stokes’

drift studies, the velocities of interested were zonal and vertical.

Fig. 5.15a plots the stokes drift profile against y, uS as defined in eq. (5.5) and eq. (5.6), and

fig. 5.15b plots the mean location of particles after 1000 days which have been advected by the

kinematic Rossby half waves, as defined in eq. (5.3). The profile in fig. 5.15a is quantitatively
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the same as that derived in Weber (2017), despite the formulation being very different. Weber

(2017) derived Stokes’ drift for equatorial Rossby waves on a β-plane. The figure in question

was for the first baroclinic mode at the surface. They also don’t account for background flows.

It is also qualitatively similar to the meridional profiles of Stokes’ drift induces by Rossby waves

as seen in Li et al. (1996). There is a qualitative agreement between the two figures, in that

there is pronounced zonal dispersion on the jet core, and dispersion in the opposite direction

around flanks of the jet. However, we do see that the magnitude of transport around the core

is slightly more marked than what Stokes’ drift would imply. We should be getting about

three times the amount of spreading in the jet core in relation to that on the flanks. This may

be explained by the fact that the Lagrangian velocities were only approximated by a Taylor

expansion to O(ξ).

Fig. 5.15c plots the same but for particles advected by the actual RossbyHalf EOFs, as in the

EOFs produced by decomposition of the dynamical flow field combined with their corresponding

PCs. We see qualitatively the same behaviour. We do however see greater dispersion in the

return flow in the top layer, in fact it is comparable to jet core dispersion. Though it is very

similar quantitatively to the kinematic model. The RossbyHalf EOFs alone are only meant to

represent the eddy field, and so the Stokes’ drift in this section is meant to emulate the mean

spread of the EO Lagrangian particles and so we do not include the relative speed of the wave

compared to the background flow.
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(a) Analytical solution for the stokes drift.

(b) Mean spread of particles for the kinematic model.
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(c) Mean spread of particles for the EOF rossbyHalf modes.

Figure 5.15: Figures comparing the stokes drift and mean spread (km) for the half rossby wave
kinematic model and the rossby half eof modes. They all show qualitatively similar results.

5.4 Summary and Conclusion

Our first step in establishing whether we could motivate a kinematic model to appropriately

simulate Lagrangian transport, was to verify if a finite number of EOFs could capture La-

grangian transport. We found that zonal dispersion could be simulated well in both regimes

across the whole domain. This prompted us to ask which were the most important patterns in

causing this zonal transport.

We categorise the EOFs into different patterns and deducted them in turn from the full

flow, and advected particles using the FFE methodology. From this we found that the zonal

EOF pattern and half domain length Rossby waves were the most influential EOF patterns.

We proceeded to synthetically reproduce the RossbyHalf waves by constructing an analyt-
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ical stream function to represent the Rossby wave and then we analytically advected particles.

A combination of the Rossby wave and zonal flow came pretty close to capturing the zonal

dispersion across the jet.

By calculating the Stokes’ drift as a result of the Rossby wave, we found that the Stokes’

drift profile emulated the mean zonal dispersion profile as a result of the actual EOF modes for

the half Rossby waves implying that Stokes’ drift is the primary mechanism behind enhanced

eddy-induced zonal dispersion. Stokes’ drift is typically associated with sub-surface drifters

advected by travelling gravity waves (van den Bremer & Breivik 2018a, van den Bremer &

Taylor 2015) and results in vertical oscillations and a mean drift. It has been used for example

to explain surface dispersion of micro-plastics (Onink et al. 2019). It is not typically associated

with particles being advected purely in the horizontal plane. It results in non-closed circular

particle paths. Where there is no wave propagation, there is no mean drift of particles and so

particles form closed circular paths (Henry 2019). Fig. 5.16 illustrates this type of drift caused

by surface waves. We are seeing the same kind of transport, except flipped from the vertical to

the horizontal plane.

Figure 5.16: Figure illustrating Stokes drift resulting from free-surface waves with and without
a current. Courtesy of Henry (2019)

Traditionally, isolation of Lagrangian coherent structures is used to diagnose kinematic

oceanic features that play dominant roles in particle dispersion and mixing (Sinha et al. 2019,

Haller & Yuan 2000), so this approach provides a novel method where parameterisation and

identification of flow features does not need to be done using Lagrangian methods, but can be

done from only Eulerian data. It does however remain to be investigated how to retrieve the



5.4. Summary and Conclusion 133

necessary parameters from oceanic or numerical model data to determine the kinematic model.

The story for meridional dispersion is however different. A large number of EOFs (even

more than 20) is needed to capture the meridional spreading. This implies that small-scale

motions play a big role in meridional transport, and that a deterministic kinematic model is

going to struggle to effectively parameterise meridional transport. A large number of modes is

needed, which would prove to be quite expensive.

The role of parameters in the derived kinematic model were also investigated. In agreement

with Thompson & Kawase (1993), the wave propagation as opposed to the Eulerian mean, is the

important role in determining mean drift of particles. It was found that there was a critical eddy

propagation speed at which zonal dispersion was enhanced, much like in Ferrari & Nikurashin

(2010), but where meridional dispersion was almost completely suppressed. It remains to be

answered what determines the value of this critical eddy propagation speed? We hypothesise

that the lack of meridional wave number results in suppression of meridional dispersion, but

this would need to be further investigated an verified.

Furthermore, Li et al. (1996) states that the combination of waves is what can induce

stirring processes in the interior equatorial ocean. Could meridional dispersion be captured by

combining several Rossby type waves? Would the cross-jet dispersion still be suppressed at this

critical eddy propagation speed?



Chapter 6

Lagrangian Stochastic Models

6.1 Background

Stochasticity has frequently been added to ocean models to represent a variety of phenomena,

and is generally used to represent small-scale motions as a result of turbulence which we are

unable to capture deterministically. Both ocean mesoscale eddies (Mana & Zanna 2014, Berloff

2005) and eddy-induced transport (Berloff & McWilliams 2002, 2003) have been parameterised

by stochastic models. We will go into more in-depth detail outlining some stochastic models

and their applicability to the ocean at the end of this chapter.

We will be following the methodology of Berloff & McWilliams (2002), in using Markov

models. But firstly, let us outline the theory behind such models. We follow the arguments

presented in Rodean (1996) in this section.

Supposing Xt is a stochastic process, we can write a 1D stochastic differential equation for

Xt, known as a Generalised Langevin Equation, as follows:

dXt = a(Xt, t)dt+ b(Xt, t)dWt, (6.1)

where a and b are continuous functions, dWt is a random increment, and W (t) is a Wiener

Process related to white noise, ξ, as follows (Rodean 1996):

134
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W (t) =

∫ t

0

ξ(s)ds, (6.2)

W (t) represents the particle location advected due to Brownian motion at time t. Therefore

we can express dW (t) = W (t + dt) −W (t) = ξ(t)dt. The incremental Wiener process dW (t)

has mean and variance:

〈dW (t)〉 = 0 (6.3)〈
(dW (t))2

〉
= dt, (6.4)

and is normally distributed: dWk(t) ∼ N (0, dt).

We shall consider Markovian models, where the probability distribution of the stochastic

variable at the current time step, Xt, is only dependent on the previous time step, that is:

p(Xt = xt|Xt−1 = xt−1, · · · , X0 = x0) = p(Xt = xt|Xt−1 = xt−1). (6.5)

We can express the evolution of probability density, p, for a Markovian process with the

Fokker-Planck Equation:

∂p(x, t)

∂t
= −

N∑
i=1

∂

∂xi
[ai(x, t)p(x, t)] +

N∑
i=1

N∑
j=1

∂2

∂xi∂xj

[
1

2
bijbjkp(x, t)

]
. (6.6)

p(x, t) is the probability density of the random variable x. In a zeroth-order Markov model,

this would be the particle position. In Markov models of higher successive integer orders, the

variable to which stochasticity is applied is the successive higher order derivative of the particle

position. We refer to a(x, t) as the drift correction term and b(x, t) as the diffusion term.

We aim to find solutions for a and b for each Markov model that obey the well-mixedness

condition. The well-mixedness constraint states that the Lagrangian probability density func-

tion is equivalent to the Eulerian probability density function. This means that uniformly dis-

tributed particles remain uniformly distributed. We derive the stochastic differential equations

defining Markov-models of successive orders referring to eq. (6.6). We will also be assuming
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that the x and y directions are independent of each other, as in there is no cross-correlation,

as the flow is zonally dominated and off diagonal components of the diffusivity tensor are neg-

ligible. We will briefly visit the case where we do assume that there is cross-correlation at the

end of this chapter.

6.2 Model 1: 0th-Order Markov (Random Walk)

This is the simplest stochastic model in our hierarchy, alternatively known as a Markov dis-

placement process. Here, a stochastic term is added to the particle position x resulting in the

1D stochastic differential equation, derived in appendix chapter H:

xi(t+ dt) = xi(t) +

(
ui +

∂Ki

∂xi

)
dt+

√
2KidW (t). (6.7)

This somewhat differs from the classical homogeneous diffusion model (as seen in Griffa

(1996)) due to the presence of the diffusivity derivative term. This term is what is known as the

‘drift term’. This arises due to the spatial inhomogeneity of the diffusivity, i.e. the process is not

isotropic. Due to the zonal structure of our flow field, we have estimated the diffusivity in zonal

bins, and therefore assumed that the diffusivity does not vary in the x-direction. Therefore,

this drift term will be introduced in the y-direction and there will therefore be a dependence

on the y coordinate.

This model is only able to model the far-field, where the far-field eddy diffusivity coefficient

is Kii = σ2
iit (see eq. (4.10) and Thomson & Wilson (2013)). So by construction, this model

will only be able to model diffusive processes with a constant eddy-diffusion coefficient. We

therefore expect this model to not be able to accurately parameterise the non-diffusive material

transport present in the meandering jet.

The use of the diffusivity tensor will evidently be quite crude because, as seen before, this

process is inherently non-diffusive and so K changes in time. Therefore, we choose a ‘best’

guess diffusivity. We know that we see initial ballistic dispersion, so we know that we will

not capture this behaviour, and so no attempt is made to fit the diffusivity over the ballistic
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time-scale, but rather to fit the long-term, or far-field, asymptotic behaviour.

Description of the Numerical Model

As with the transport model described in section 3, we must perform numerical time integration

and spatial interpolation.

The time-averaged velocity, diffusivity and diffusivity derivative must be interpolated. We

calculate the time-averaged velocity (and flow derived variables such as the velocity variance)

using the same 2D-cubic interpolation method as applied in the transport model. As diffusivity

only varies in y, we only need to perform 1D spatial interpolation. One dimensional cubic

Lagrange polynomial spatial interpolation, from which 2D-cubic interpolation was derived, was

used to estimate the diffusivity. In order to estimate the derivative, a first order finite difference

scheme was used to numerically differentiate interpolated diffusivities.

A first order Euler method was used for time-integration and, as the flow variables are of

the same scale as for the dynamical model, a time step of 3600 seconds was used.

6.2.1 Comparing different estimates of Kii

We use two methods of calculating the diffusivity:

Ki =
1

2

∂Dii

∂t
, (6.8)

= σ2
iiTL. (6.9)

and compare the results in fig. 6.1 for the two jet regimes and bins 2 and 5 to compare

the surf zone and jet core respectively. We include the figures for all bins and layers for both

regimes in appendix J.



6.2. Model 1: 0th-Order Markov (Random Walk) 138

(a) Bin 2 - Coherent Jet (b) Bin 5 - Coherent Jet

(c) Bin 2 - Latent Jet (d) Bin 5 - Latent Jet

Figure 6.1: Single-Particle Dispersion (km2) against time (days) for the Diffusion Model for the

two jets comparing use of diffusivity calculated from the SPD or from σ2
iiT

(i)
L . Demonstrates

SPD gives a more accurate asymptotic diffusivity estimate.

When calculating the diffusivity from the SPD, we assume the SPD to be linear, which

evidently it is not, and therefore the diffusivity will be over-fitted. Hence, as expected, the

SPD approximation underestimates the zonal dispersion as the diffusivity is overestimated

due to super-diffusivity, and conversely, dispersion is underestimated meridionally due to sub-

diffusivity. The converse is true for using σ. In particular, the meridional dispersion is drasti-
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cally overestimated. It appears to only be capturing the ballistic growth rate.

We will use the SPD diffusivity approximation for the following diffusion models. The SPD

method is also slightly more accurate in the zonal direction.

6.2.2 Comparing PV-mapped Diffusion KPV to Kii

Now we run the diffusion model, except using the PV-mapped diffusivity. The PV-mapped

diffusivity KPV is stored in the PV bins, and interpolated at the particle location, and particles

are released in non-uniform bins, where the zonally-averaged and time-averaged PV has been

binned uniformly and then mapped to its y coordinate. The particles are then released according

to the y coordinate.

We plot the single-particle dispersion as obtained from diffusion models in fig. 6.2 for both

jet regimes. For the coherent jet, KPV results in faster growth, however the converse is true

for the latent jet. The PV-mapped diffusion model overestimates growth in the coherent jet,

however for the latent jet, the growth rate appears to be similar once the ballistic time-scale is

passed.

From fig. 4.19, PV-mapped dispersion shows clear maxima in the diffusivity around the jet

core, in bins 5, 6 and 7. Restricting our attention to those bins in fig. 6.2, we can see that

initially, KPV comes closer to capturing that rapid growth in dispersion. However, as the bins

are very narrow and the locality time-scale is quite small, particles leave the bin quickly and

so are then advected using KPV for the mixing regions, which is underestimated, and hence

results in slower growth.

However, we are not capturing the initial ballistic growth. Both diffusivity measures have

been fitted to a non-linear dispersion plot, and so can only expect to fit the gradient for a finite

period. This leads us to consider the next model in the hierarchy.
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(a) Coherent Jet.
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(b) Latent Jet.

Figure 6.2: Single-Particle Dispersion (km2) against time (days) for a diffusion model using
diffusivities calculated using both the regular method and the PV-mapped method. PV-mapped
is only more accurate in the immediate vicinity of the jet core.
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6.3 Model 2: 1st-Order Markov (Random Flight)

The limitations demonstrated by the diffusion model, in particular its failure to capture the

short-term ballistic behaviour, D ∼ t2, we hope to capture in the 1st-order model. Random

flight models have been used in oceanic literature before (Berloff & McWilliams 2002, Griffa

et al. 1995, Griffa 1996), and are now quite common practice in use as a parametrisation method

favourable to the traditional diffusion approach. An advantage of this model, is that it only

requires one additional parameter and so is relatively simple to implement.

The governing equations for the Markov-1 Model are derived in appendix I following the

methodology as described in Thomson (1987):

xi(t+ dt) = xi(t) + (ui(t) + u′i(t)) dt, (6.10)

u′i(t+ dt) = u′i(t)−
u′i

T
(i)
L

dt+
1

2

(
1 +

(
u′i
σii

)2
)
∂σ2

ii

∂xi
dt+

(
2σ2

ii

T
(i)
L

)1/2

dWi(t). (6.11)

So we have two parameters of interest in this model: σii and T
(i)
L , which is the Lagrangian

integral time-scale, as discussed in section 4.3.3. Much like with the diffusion model, we will

compare which combination of parameters provide the best results.

The diffusion model results in a δ-function for R(τ), which implies an immediate loss of

memory. A Markov-1 model however gives R(τ) = e−τ/TL (Griffa et al. 1995). As we have

already seen, this does not quite fit R as obtained from our data, especially in the meridional

direction, though Rx does fit an exponential decay quite closely.

The velocity fluctuation will be initialised as a Gaussian distribution with mean 0 and

variance σ2.

6.3.1 Description of the numerical model

Similarly to the 0-th order Markov model, we will use a time step of 3600 seconds, the Euler

time-integration scheme, and cubic interpolation. We however have more variables to consider.
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TL(i) and σii are estimated per zonal bin. We assume it is constant in x and is defined and the

mid-point of the bin. We then perform 1D cubic lagrange interpolation to find the value at the

particle location.

6.3.2 Comparing different σ estimates

We compare two different ways of retaining the Lagrangian velocity variance: σ2. First is

directly from the Lagrangian trajectory data and the second is from the diffusivity: σ2
ii =

Kii/T
L
i . As we saw in the diffusion model, these different methods can produce vastly different

results. They would only produce the same result if the process was purely diffusive. The

resulting SPD is plotted in fig. 6.4 for the two jet regimes for bins 2 and 5. Figures for all bins

are included in appendix J. Calculating σ from the diffusivity consistently results in better

results, just as with the diffusion model, so now we will compare this with the PV-mapped

diffusivity.
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(a) Bin 2 - Coherent Jet (b) Bin 5 - Coherent Jet

(c) Bin 2 - Latent Jet (d) Bin 5 - Latent Jet

Figure 6.3: Single-Particle Dispersion (km2) against time (days) for the Diffusion Model for the

two jets comparing use of diffusivity calculated from the SPD or from the as σ2
iiT

(i)
L . Demon-

strates SPD gives a more accurate asymptotic diffusivity estimate.

6.3.3 Comparing PV-mapped Markov-1 to Regular Markov-1

Now we see if KPV gives us better results. Instead of using σPV , we use KPV , and the SPD TL.

The PV-mapped dispersion underestimates the ballistic time-scale, and as this is what we are

interested in capturing, it is important to consider the ‘true’ ballistic time-scale. The dispersion
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is plotted in fig. 6.4 for PV bins. Much like for the diffusion model, PV-mapped dispersion

more closely captures the initial growth in bins 5, 6 and 7 around the jet core. Though, in the

latent jet it performs much worse at later times.

Over the whole time period, the Markov-1 model performs slightly better than the diffusion

model, however as theory suggests, sub-diffusivity is not effectively modelled and dispersion is

over-estimated in the intermediate-time range by both diffusivities.
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(a) Coherent Jet.
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(b) Latent Jet.

Figure 6.4: Meridional single-particle dispersion (km2) in the top layer against time (days) for
the random flight model using diffusivities calculated using both the regular method and the
PV-mapped method.
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6.4 Model 3: 1st-Order Markov with Looping

An exponential fit for the LACF does not always give an appropriate value for T
(i)
L . It is

frequently less than the time at which R reaches its first zero. Furthermore, as R is often

oscillatory, it does not fit well to an exponential curve.

Veneziani et al. (2005), suggested a different 1st-order stochastic model which accounts for

this oscillatory behaviour that is produced by looping trajectories. It is also able to simulate sub-

diffusive behaviour. They achieve this by introducing a spin parameter Ω. The new stochastic

differential equations (for homogeneous flows) are:

du′ = − u′

T
(x)
L

dt− Ωv′dt+

(
2σ2

xx

T
(x)
L

)1/2

dW (t), (6.12)

dv′ = − v′

T
(y)
L

dt+ Ωu′dt+

(
2σ2

yy

T
(y)
L

)1/2

dW (t), (6.13)

Ω =
〈u′dv′ − v′du′〉

2dtEk
, (6.14)

where Ek = 1/2
(
σ2
ii + σ2

jj

)
is the Eddy Kinetic Energy.

For this SLM, we get that (Veneziani et al. (2004)):

Ri = exp

(
− t

T
(i)
L

)
cos(Ωt), (6.15)

which is what Dosio et al. (2005) suggested, and can more appropriately fit the observed

oscillatory Lagrangian autocorrelation functions.

According to Veneziani et al. (2004), looping trajectories are most frequently observed in

the return flow regions, that consist of vortices and eddies. The jet core region has a dominant

zonal flow, so we would not expect to see looping full trajectories.

We plot the ensemble-averaged Ω in fig. 6.5 for the two jet regimes for the FFE case. We

see that in the coherent jet, looping trajectories are found in the return flows. In the top

layer, cyclonic trajectories are found beneath the jet and anti-cyclonic trajectories above the

jet. The reverse is true for the bottom layer. The coherent jet however seems to have much



6.4. Model 3: 1st-Order Markov with Looping 149

fewer cyclonic trajectories as a much smaller Ω is found across the domain. The structure is

also very different. Cyclonic trajectories are found around the jet core and anti-cyclonic in the

mixing regions.

However, our values of Ω are much smaller than what was found in Veneziani et al. (2005),

by a whole order of magnitude. A typical value of Ω for cyclonic trajectories is 0.25 days−1.

Even when we plot the full distribution of Ω, we only achieve maximum values of around 0.06

days−1.

The velocity autocorrelation functions plotted in Veneziani et al. (2005) differ to those

found in our simulation. Their zonal and meridional autocorrelation functions don’t differ

as much from each other. That is, the zonal autocorrelation does sometimes oscillate and it

frequently decays to zero within a time-lag of 20 days. Our zonal autocorrelation, however,

does not. Therefore, we conclude that there is insufficient cross-correlation between the zonal

and meridional directions to warrant using a Markov model with looping.
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(a) Coherent Jet

(b) Latent Jet

Figure 6.5: Ω (days−1) for each uniform bin as calculated from the FFE trajectories for each
jet regime superimposed on the time-averaged stream function. The left panel is the top layer
and the right is the bottom layer.

6.5 Summary and Conclusion

In this chapter we examine three different stochastic models in which we use different parameters

obtained from both the standard FFE trajectories and the PV-mapped trajectories. In running

these models, it is assumed that statistics are stationary. With the exception of the Markov-1

model with looping, the velocity components are considered as independent from each other.
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Firstly, we examine the diffusion model, which is otherwise known as a 0th-order Markov

model as stochasticity is only added to the particle location. We know that since material

transport is not diffusive, we will not obtain particularly accurate results, however it does give

us a good indication of the importance of the method chosen to estimate the diffusivity. We find

that, particularly for the meridional direction, it matters whether the diffusivity is calculated

from the dispersion or from the Lagrangian velocity variance. The Lagrangian velocity variance

drastically overestimates meridional dispersion particularly around the jet core and the bottom

layer. This can be attributed to significant non-diffusive behaviour.

We do however find that zonal dispersion is quite well captured. We know that the time-

averaged flow is purely zonal and is of a greater magnitude than the eddying flow. Our results

suggest that the mean flow is still very much the dominant effect in driving zonal dispersion.

We therefore focus on meridional dispersion for the remainder of chapter.

We then run the diffusion model for particles released in PV bins also using the PV-mapped

dispersion. KPV does slightly better at the immediate time-scale at accurately capturing dis-

persion near the jet core, particularly in the coherent jet.

We then proceed to a 1st-order Markov Model where stochasticity is added to the velocity.

Particles exhibit a memory over the decorrelation time-scale and hence we are able to simulate

ballistic behaviour. We compare different diffusivity estimates and find again that using the

diffusivity as estimated from the SPD produces better results.

We obtain similar results as to the diffusion model when considering PV bins and the PV-

mapped and SPD diffusivity estimates, and up to about 100 days in bins 5, 6 and 7 (i.e. the jet

core) the PV-mapped Markov-1 model is slightly better at capturing the enhanced dispersion

seen in the jet core. However in the latent jet this is much less pronounced. Away from the

jet core, the regular method performs better. Take particular note of bins 1, 9 and 10 in the

latent jet where the SPD Markov-1 model managed to capture some ballistic growth.

To summarise, it appears that where there is little PV mixing and a strong PV gradient

(such as in the jet core of the coherent jet) the PV-mapped diffusivity is a more appropriate

measure. In mixing regions, the SPD diffusivity is more appropriate. KPV effectively captures a
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diffusivity maximum around the jet core where there is a significant meandering PV isoline, and

so can aptly capture the ‘true’ dispersion of a particle from its initial location. It underestimates,

however, the diffusivity elsewhere. Perhaps a spatial mixture of the two measures may prove

to provide better results.

It is however important to note that in the meridional direction, after the ballistic time-

scale, transport is sub-diffusive, a phenomenon that a Markov-1 model is unable to capture.

This leads us to our final model. We had two options to choose from to introduce sub-diffusivity

into a stochastic model. One is by going up an order in the hierarchy of stochastic models by

introducing white noise to the acceleration. The other, which we study in this chapter, which

is slightly simpler, is to introduce cross-correlation between the meridional and zonal velocities.

Veneziani et al. (2005) states that in regions surrounding jets, where coherent structures

such as vortices are found, which are associated with the trapping of particles and hence

sub-diffusivity, particles typically exhibit a looping behaviour, resulting in a non-zero veloc-

ity cross-correlation. We also see such behaviour, particularly in the latent jet, where vortices

are frequently shed as a result of pinching of jet meanders. Such a model results in an os-

cillatory LACF for both the zonal and meridional directions. However, only our meridional

autocorrelation is strongly oscillatory. As a result, we obtain values of Ω that are too small

to be considered looping. We conclude that this method is not suitable for flows that have a

strong zonal component even in the absence of the mean flow.

We choose to not proceed with models that can capture super-diffusivity, as firstly, this is

not behaviour that we see in the meridional direction; and while we do see this behaviour in

the zonal direction, zonal dispersion is mostly accounted for by the mean zonal flow, and we

also outline another simpler and deterministic approach to parameterise zonal dispersion in the

next chapter. We will however briefly outline some more stochastic models that can be used

and their potential advantages.

6.5.1 Further Possible Stochastic Models

Berloff & McWilliams (2002) investigated the applicability of Markov models of higher orders
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in a double-gyre model. We will firstly discuss the next two models in the hierarchy.

Reynolds (1999) introduced the second-order Lagrangian stochastic model where the ran-

dom perturbation is added to the acceleration. An additional time-scale is introduced, which is

the Markov-2 fading memory time tensor T
(2)
L . In this case the autocorrelation oscillates on one

TL and the oscillation decays exponentially with a time-scale of T
(2)
L . This would result in an

autocorrelation function similar to what we see in our data and the same as what the Markov-1

looping model gives. A key benefit of this method is its ability to simulate intermediate-time

sub-diffusive behaviour. It produced promising results in Berloff & McWilliams (2002), which

is also a jet dominated flow, and therefore may be more appropriate for use in our flow regime

than by introducing a looping parameter. Much like the first two models in our hierarchy, it

assumes that the two velocity components are independent, and in essence, T
(2)
L is equivalent

to Ω, except defined independently for each velocity component.

Reynolds (2003) introduced the idea of a third-order Lagrangian stochastic model, where

the random perturbation is added to the hyper-acceleration, the derivative of the acceleration.

A third time-scale parameter is introduced, referred to as the Markov-3 fading time-scale.

This can simulate intermediate-time super-diffusive spreading. The resulting autocorrelation

function oscillates while decaying to zero, that is, the oscillations are not centred around zero.

This is the behaviour we observe for Rx in figs. E.5 and E.6.

Other models that fall outside the typical Markov model hierarchy that have been used

in oceanographic and atmospheric applications include fractional Brownian motion (fBm), the

Matèrn process and the Ornstein-Uhlenbeck (OU) process. A major limitation of fBm is its

inability to capture diffusion, which is the long-time range behaviour exhibited by oceanic

Lagrangian trajectories (Lilly et al. 2017), and so will not be of much use. Instead, Lilly et al.

(2017) outlines the theory behind the Matèrn process and Sykulski et al. (2016) applies it

to an oceanographic setting in an attempt to simulate surface drifters which exhibit inertial

oscillations. The inertial oscillations are modelled using an OU process, and transport due to

the turbulent background flow is captured using a Matèrn process. It successfully accounts for

non-stationarity of statistics by allowing the parameters needed to define the stochastic model

to vary in space and time. A key feature of the Matèrn process, is that where the models we
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have considered in our Markov model hierarchy all have integer orders, in that stochasticity is

added to an integer order derivative of particle displacement, the Matérn process (and fBm)

does not. As this model can account for non-stationarity and anisotropy, as well as capture

short- and medium-time range behaviour, without non-physical long-time range behaviour, the

Matérn process may be a more appropriate stochastic model than a Markov-3 model.

Another stochastic approach that we have not mentioned is to add stochasticity to pa-

rameters in addition to or instead of adding stochasticity to Lagrangian variables .e.g. La-

grangian displacement, velocity etc. This is something that was experimented with in Berloff

& McWilliams (2003), Sykulski et al. (2016) and Veneziani et al. (2005). The idea behind

this is to try and capture the distribution of parameter values, as model parameters are typi-

cally determined as an ensemble average even though there may be a relatively large variance.

Lagrangian trajectories simulated using averaged statistics may not produce the full range of

behaviours observed.

Firstly, let’s focus on the application of this method in the looping Markov-1 model in

Veneziani et al. (2005). As there is a trimodal distribution of Ω, consisting of non-loopers,

cyclonic and anti-cyclonic loopers, it is important to capture all these types of behaviours.

However, it is possible that a Lagrangian trajectory can transition from one behaviour to

another. A transition probability Pnm is defined, where n and m denote the transition start

type and destination type. Vortices evolve in time, and the strong PV gradient is only a partial

barrier to transport, and so particles can escape and hence become non-looping. Pnm represents

the probability of this occurrence. Pnm = Pmn to ensure that the percentage of looping and

non-looping trajectories remains constant.

Berloff & McWilliams (2003) focuses on introducing a distributed first kinematic time-scale:

T
(1)
ik T

(1)
kj = σik[ξ]

−1
kj , (6.16)

where ξij is the Lagrangian acceleration variance, to the Markov-2 model. The distribution

of T
(1)
ii is found from Lagrangian data obtained from particles advected by the QG double gyre

model. It was shown to result in more realistic Lagrangian autocorrelation functions than the



6.5. Summary and Conclusion 155

standard Markov-2 model. This approach however will need to be extended so randomness can

be added to other model parameters.



Chapter 7

Conclusion and Future Work

The first chapters in this thesis were concerned with the model set-up of the dynamical and

transport models. We used a 2 layer doubly-periodic QG ocean model as described in Karabasov

et al. (2009). We varied the bottom friction to generate two different meandering jet regimes.

Bottom friction is used in an effort to resolve the bottom boundary layer (Rivire et al. 2004)

and acts as a drag, dampening vorticity in the bottom layer (Berloff et al. 2011). It is known

that the bottom friction has a role in controlling the influence of large-scales and mesoscales.

Rivire et al. (2004) states that a small bottom friction results in flows with large horizontal

(i.e. zonal) scales, and that the mesoscale is more energetic with a greater bottom friction.

We refer to these jets as coherent and latent, using similar terminology to that used in Berloff

et al. (2011). A key property differentiating these two regimes is the frequency of jet break-

up. Both jets are defined by strong potential vorticity gradients surrounded by regions of PV

mixing and return flows. The coherent jet exhibits an almost periodic propagating meander

that remains relatively stable throughout the simulation. The latent jet, however, frequently

undergoes disruption of the PV gradient and sheds vortices as a result. Therefore, there is

more PV mixing on the jet flanks. Furthermore, the time-averaged zonal velocity demonstrates

that the coherent jet shows less positional variability. This is indicated by a narrower band of

enhanced positive zonal velocity. This is in agreement with Berloff et al. (2011) and Khatri &

Berloff (2018), where smaller bottom friction values are associated with a more PV staircase

like structure as described by Dritschel & McIntyre (2008). They also found that increasing
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the bottom friction results in greater eddy kinetic energy and weaker mean flows.

Chapter 3 focused on building and testing the transport model that will be used to advect

particles. We built a transport model especially for use in our dynamical model that made use

of the uniform grid, double-periodicity and non-divergence. We derived and tested the accuracy

and performance times of two novel spatial interpolation methods: 2D-cubic and bicubic. They

are both motivated by finding a polynomial approximation for the stream function that can

then be differentiated to find the velocity using the non-divergence principle. It was found that

the 2D-cubic method was both more accurate and faster than the bicubic method. The bicubic

method was limited by matrix inversion. However the 2D-cubic method is un-symmetric and

so the advantages in accuracy gained by the 2D-cubic method may be due to the un-symmetry

of our flow, or in other words, that it is zonally dominated. The 2D-cubic algorithm may need

to be flipped for a meridionally dominated flow. These are questions that would need to be

answered before applying these spatial interpolation methods to other flow fields. We then

compare two different time integration schemes: euler and Runge-Kutta fourth-order (RK4)

methods and found that RK4 dramatically increased the accuracy of the transport model.

In chapter 4 we both investigate the work carried out in Ferrari & Nikurashin (2010) and

use the transport model built in chapter 3 to advect particles by the flow fields generated by

the dynamical model.

The first thing we consider is how to appropriately isolate eddying effects on Lagrangian

transport. We follow the reasoning of Rypina et al. (2012) by introducing the concept of full-

following-eddy (FFE) trajectories. Real floats and drifters in the ocean will be advected by the

full flow, not the eddying flow, therefore it is more relevant to ask what the eddying effects are

on the full trajectory. We find that the most significant difference between the two eddying

trajectories is in the meridional direction. The eddying flow on its own over-estimates top

layer meridional diffusivity and suggests there is much more meridional mixing than is actually

present. This implies that the zonal jets acts to suppress eddy-induced meridional mixing.

We advected particles using a simplified version of the kinematic model used in Ferrari &

Nikurashin (2010) to verify that FFE meridional dispersion is maximised when the eddy prop-

agation speed equals the uniform background velocity. We also find that the same behaviour is
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observed in the zonal direction. We repeat this experiment but with a Gaussian jet, and find

that dispersion is maximised when the eddy propagation speed equals the average background

zonal velocity. We also find that sub diffusion occurs when the background velocity differs from

the eddy propagation speed and that super diffusion occurs otherwise.

We also verify that the diffusive and isotropic estimate is not appropriate to parameterise

material transport. Meridional transport is consistently sub-diffusive, behaviour which is typ-

ically associated with trapping of particles inside vortices (Berloff et al. 2002, Veneziani et al.

2005). Even in the absence of the mean zonal flow, zonal transport is super-diffusive.

However, the obtained Lagrangian statistics are smeared. Uniformly binning the domain

zonally results in bins that may not capture the whole jet as it meanders, so the jet may occupy

several bins. A single bin may also describe several distinct regions, such as a transport barrier

associated with the jet core, and the flanks for the jet core which may be associated with

enhanced mixing. Furthermore, due to the large meridional variation in the jet core, particles

that remain on the jet core will exhibit a large oscillatory meridional dispersion, even though

they may not have dispersed relative to the jet core. Therefore we introduce a meridionally

monotonic coordinate derived from flow properties. We map and uniformly bin the zonally

and temporally averaged PV to the y coordinate. Our new dispersion measure is referred to

as PV-mapped dispersion. This new PV-mapped dispersion method more aptly captures a

meridional diffusivity maximum around the jet core for both jet regimes. The coherent jet,

however, also has a slight minimum in the jet core. This demonstrates enhanced dispersion on

the jet flanks, but that the jet core is a barrier to transport. We however find that in regions

of high PV mixing in the surf zones, the PV-mapped diffusivity is underestimated. The PV-

mapped locality time-scale in the latent jet clearly demonstrates how particles are leaving the

PV isoline around the jet core, but stay closer to their PV isoline for a longer period of time

in the jet flanks. This is in contrast to the regular locality time-scale in the latent jet which

showed little variation across the domain.

There are, however, limitations to this method. Firstly, it relies on being able to find a

flow variable that varies monotonically against y, or some other spatial coordinate. This means

that there must be some kind of PV staircase like structure, and we can only obtain statistics
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in one direction. Furthermore, in order to obtain a monotonic variable, we perform both zonal

and temporal averaging and therefore results in some smearing. Perhaps even sharper statistics

could be obtained with another less averaged variable.

One Lagrangian statistical measure that we did not explore that has been of use in diagnos-

ing mixing barriers and Lagrangian coherent structures is that of Lyapunov exponents (Haller

& Yuan 2000). A Lyapunov exponent quantifies the rate of separation of infinitesimally close

particles. This may provide a better diagnosis for the partial transport barrier and allow us to

more aptly compare the nature of the two jet regimes. However, it is a two-particle statistic

that diagnoses mixing as opposed to transport and so would not provide useful statistics to be

used for parameterising Lagrangian transport. Furthermore, calculating the jet core crossing-

rate of particles, similarly to that done in Berloff et al. (2002), may provide further insight into

whether particles are being repelled away from the jet core, or are in fact crossing the jet.

In the chapter 5 we attempt a kinematic approach to parameterisation by decomposing the

flow into Empirical Orthogonal Functions. We firstly carry out some analysis to establish if we

can reproduce the observed Lagrangian statistics with a reasonable number of EOFs, and then

deduce the role of EOFs in Lagrangian dispersion before motivating a kinematic model.

We find that even with the 20 EOFs, we don’t fully capture meridional spreading, illustrat-

ing that a kinematic model will not be appropriate for meridional transport parameterisation.

Zonal dispersion however is almost entirely captured by 20. Our following analysis reveals that

a single row of zonally propagating eddies with a wavelength of half the domain accounts for

most of the zonal dispersion in the top layer. We then synthetically reproduce these EOFs

to recapture the zonal dispersion. We also establish a critical eddy propagation speed that

maximises zonal transport and minimises meridional transport as induced by the analytic flow

field. This analytic flow field also induces a zonal Stokes’ drift. It however remains to establish

a relationship between the large-scale flow and the parameters that determine the Stokes’ drift

before a kinematic model can be used in oceanic parameterisations.

In chapter 6 we explore the applicability of a hierarchy of Markov models of integer orders

using Lagrangian statistics as calculated in chapter 4. We find that the method used to calculate

the diffusivity, whether from the dispersion or the Lagrangian velocity variance, is important
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due to significantly non-diffusive transport. We find that the zonal dispersion is relatively well

captured by the Markov-1 model as dispersion is dominated by mean flow effects. Markov-1

also performs slightly better than the diffusive model in the meridional direction, though it still

does not capture sub-diffusive spreading.

Instead of taking the approach in Berloff & McWilliams (2002) by introducing randomness

to the acceleration, we introduce a cross-correlation parameter Ω, motivated by Veneziani

et al. (2005). This will result in oscillatory Lagrangian autocorrelation functions. We however

find, that as our zonal dispersion is strongly super-diffusive and so doesn’t exhibit a strongly

oscillatory autocorrelation function, this model is not appropriate for use in jet dominated

flows.

We also test the use of PV-mapped diffusivity in the Markov-0 and Markov-1 model. We find

that it results in a slightly more accurate dispersion in the immediate jet core vicinity. Though

this area of improved accuracy is quite limited as the diffusivity is substantially underestimated

elsewhere, particularly for the latent jet. We suggest that perhaps a spatial mixture of the two

measures may be more appropriate, however it remains to establish the criteria that must be

met in order for the PV-mapped diffusivity to be relevant. We hypothesise that in regions near

a strong PV gradient it may be of use, though this remains to be verified.

7.1 Summary of Findings

In this thesis we clearly establish anisotropic and non-diffusive Lagrangian transport is con-

sistently observed and therefore novel parameterisation techniques must be examined. By

introducing a flow based dispersion measure, we are able to capture a diffusivity maximum at

the jet core and verify that particles are less likely to stick to their PV isoline in the jet core,

but remain closer to their PV isoline on the flanks. Furthermore, the latent jet appears to be a

weaker barrier to transport, exhibited by smaller diffusivity estimates. We also find that zonal

and meridional transport are sufficiently un-correlated, illustrated by small values for Ω, that it

makes sense to treat the two directions as independent. The mechanism behind zonal dispersion

is much better understood through the dominance of the mean flow and by representing the
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eddying-component of Lagrangian transport as a Stokes’ drift. Therefore, more complicated

techniques may not be needed to capture the zonal dispersion. More work needs to be done,

however, to understand the mechanisms behind meridional dispersion. It is not captured by

a large number of EOF modes, so we can conclude that very small flow variabilities play a

significant role in meridional dispersion. Therefore, we hypothesise that we cannot capture

meridional Lagrangian transport deterministically. We must resort to Stochastic methods.

We find a significant time period where sub-diffusivity is captured, for which at least a

Markov-2 model is needed. We argue, however, that we should not need to exceed a Markov-2

model and that zonal dispersion can be understood by other means. van Sebille et al. (2018)

also reiterates that Markov models can be used to account for velocity correlations that are as

a result of eddy processes.

7.2 Summary of Further Work

A key property of the 2D-cubic spatial interpolation method is that, as it calculates cubic

polynomials at the y coordinates first, it is antisymmetric. Would the 2D-cubic regime still be

more accurate if the method was rotated 90 degrees to calculate cubic polynomials in x first?

Also, what is the threshold of the ratio of number of Lagrangian particles to number of time

steps at which the bicubic method starts to perform faster than the 2D-cubic method?

It is not completely clear whether particles are diverging away from the jet core, or are

crossing the jet core. Therefore it remains to explore jet core crossing-rates similarly to that

done in Berloff et al. (2002). Two-particle statistics such as Lyapunov exponents can also

illustrate whether particles are diverging from each other. A maximum Lyapunov exponent

illustrates chaotic mixing and a rapid divergence of particles.

More investigation of the PV-mapped dispersion method should be carried out. The idea of

trying to obtain less smeared and more flow based dispersion statistics would be useful in order

to calculate more local diagnostics. If we were to simulate an even more latent jet by further

increasing the bottom friction, would we still see a KPV maximum? Or would the instantaneous

PV be too mixed meridionally that PV binned particles would not form any spatial structure?
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How would the idea of PV-mapped dispersion apply to real data? Can we obtain sufficiently

high-resolution data to calculate the PV at the particle location accurately enough? Also, could

a monotonic flow based coordinate be determined? It may be necessary to diagonalise the flow

field before performing such analysis so that the flow appears zonal. This would have to be

performed in regions with a sufficiently high PV gradient, such as near the separation point of

the Gulf Stream or the ACC.

In order to apply a Stokes’ drift based kinematic model to an OGCM, it is necessary to

find the relationship between the coarse-grained large-scale flow and the half Rossby wave

parameters, such as wave width, amplitude and period. It also remains to establish what the

relationship between the critical eddy propagation speed, that maximises zonal transport and

minimises meridional transport, and flow variables is, and whether it is the lack of meridional

wave number that results in the cross-jet transport suppression.

We have verified that sub-diffusivity needs to be able to be simulated in order to effectively

parameterise meridional transport, therefore it remains to test the accuracy of a Markov-2

model. This is the minimum order model that we would need. The Matèrn process may also

prove effective, though it is slightly less simple.
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Garćıa-Garrido, V. J., Curbelo, J., Mechoso, C. R., Mancho, A. M. & Wiggins, S. (2017), ‘A

simple kinematic model for the lagrangian description of relevant nonlinear processes in the

stratospheric polar vortex’, Nonlinear Processes in Geophysics 24(2), 265–278.

URL: https://www.nonlin-processes-geophys.net/24/265/2017/

Greenslade, M. D. & Haynes, P. H. (2008), ‘Vertical transition in transport and mixing in

baroclinic flows’, Journal of the Atmospheric Sciences 65(4), 1137–1157.

URL: https://doi.org/10.1175/2007JAS2236.1

Griffa, A. (1996), Stochastic modelling in physical oceanography, Birkhauser Boston Inc., Cam-

bridge, MA, USA, chapter Applications of Stochastic Particle Models to Oceanographic Prob-

lems, pp. 113–140.

URL: http://dl.acm.org/citation.cfm?id=242899.242910

Griffa, A., Owens, K., Piterbarg, L. & Rozovskii, B. (1995), ‘Estimates of turbulence param-

eters from lagrangian data using a stochastic particle model’, Journal of Marine Research

53(3), 371–401.

URL: https://www.ingentaconnect.com/content/jmr/jmr/1995/00000053/00000003/art00003

Haller, G. & Yuan, G. (2000), ‘Lagrangian coherent structures and mixing in two-dimensional

turbulence’, Physica D: Nonlinear Phenomena 147(34), 352 – 370.

URL: http://www.sciencedirect.com/science/article/pii/S0167278900001421

Hardesty, B. D., Harari, J., Isobe, A., Lebreton, L., Maximenko, N., Potemra, J., van Sebille,

E., Vethaak, A. D. & Wilcox, C. (2017), ‘Using numerical model simulations to improve



BIBLIOGRAPHY 167

the understanding of micro-plastic distribution and pathways in the marine environment’,

Frontiers in Marine Science 4, 30.

URL: https://www.frontiersin.org/article/10.3389/fmars.2017.00030

Haynes, P. H., Poet, D. A. & Shuckburgh, E. F. (2007), ‘Transport and mixing in kinematic

and dynamically consistent flows’, Journal of the Atmospheric Sciences 64(10), 3640–3651.

URL: https://doi.org/10.1175/JAS4030.1

Henry, D. (2019), ‘Stokes drift in equatorial water waves, and wavecurrent interactions’, Deep

Sea Research Part II: Topical Studies in Oceanography 160, 41 – 47. Waves and Currents.

URL: http://www.sciencedirect.com/science/article/pii/S0967064518301334

Juckes, M. N. & McIntyre, M. E. (1987), ‘A high-resolution one-layer model of breaking plan-

etary waves in the stratosphere’, Nature 328(6131), 590–596.

URL: https://doi.org/10.1038/328590a0

Kamenkovich, I., Berloff, P. & Pedlosky, J. (2009), ‘Anisotropic Material Transport by Eddies

and Eddy-Driven Currents in a Model of the North Atlantic’, Journal of Physical Oceanog-

raphy 39(12), 3162–3175.

URL: http://dx.doi.org/10.1175/2009JPO4239.1

Kamenkovich, I., Rypina, I. I. & Berloff, P. (2015), ‘Properties and Origins of the

Anisotropic Eddy-Induced Transport in the North Atlantic’, Journal of Physical Oceanogra-

phy 45(3), 778–791.

URL: http://dx.doi.org/10.1175/JPO-D-14-0164.1

Karabasov, S., Berloff, P. & Goloviznin, V. (2009), ‘CABARET in the ocean gyres’, Ocean

Modelling 30(23), 155 – 168.

URL: http://www.sciencedirect.com/science/article/pii/S1463500309001267

Khatri, H. & Berloff, P. (2018), ‘Role of eddies in the maintenance of multiple jets embedded

in eastward and westward baroclinic shears’, Fluids 3, 91.



BIBLIOGRAPHY 168

Klocker, A. & Abernathey, R. (2014), ‘Global patterns of mesoscale eddy properties and diffu-

sivities’, Journal of Physical Oceanography 44(3), 1030–1046.

URL: https://doi.org/10.1175/JPO-D-13-0159.1

Klocker, A., Ferrari, R. & LaCasce, J. H. (2012), ‘Estimating suppression of eddy mixing by

mean flows’, Journal of Physical Oceanography 42(9), 1566–1576.

URL: https://doi.org/10.1175/JPO-D-11-0205.1

Klocker, A., Ferrari, R., Lacasce, J. & Merrifield, S. (2012), ‘Reconciling float-based and tracer-

based estimates of eddy diffusivities in the southern ocean’, Journal of Marine Research

70, 569–602.

LaCasce, G. I. (2008), ‘Statistics from Lagrangian observations’, Progress in Oceanography

77(1), 1 – 29.

URL: http://www.sciencedirect.com/science/article/pii/S0079661108000232

Lacorata, G., Palatella, L. & Santoleri, R. (2014), ‘Lagrangian predictability characteristics of

an ocean model’, Journal of Geophysical Research: Oceans 119(11), 8029–8038.

URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014JC010313

Li, X., Chang, P. & Pacanowski, R. C. (1996), ‘A wave-induced stirring mechanism in the

mid-depth equatorial ocean’, Journal of Marine Research 54(3), 487–520.

URL: https://www.ingentaconnect.com/content/jmr/jmr/1996/00000054/00000003/art00005

Lilly, J. M., Sykulski, A. M., Early, J. J. & Olhede, S. C. (2017), ‘Fractional Brownian motion,

the Matérn process, and stochastic modeling of turbulent dispersion’, Nonlinear Processes in

Geophysics 24(3), 481–514.

Liu, Y., Wilson, C., Green, M. A. & Hughes, C. W. (2018), ‘Gulf stream transport and mix-

ing processes via coherent structure dynamics’, Journal of Geophysical Research: Oceans

123(4), 3014–3037.

URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JC013390

Lumpkin, R. & Pazos, M. (2007), Measuring surface currents with Surface Velocity Program



BIBLIOGRAPHY 169

drifters: the instrument, its data, and some recent results, Cambridge University Press,

p. 3967.

Lumpkin, R., Treguier, A.-M. & Speer, K. (2002), ‘Lagrangian eddy scales in the northern

atlantic ocean’, Journal of Physical Oceanography 32(9), 2425–2440.

URL: https://doi.org/10.1175/1520-0485-32.9.2425

Mana, P. P. & Zanna, L. (2014), ‘Toward a stochastic parameterization of ocean mesoscale

eddies’, Ocean Modelling 79, 1 – 20.

URL: http://www.sciencedirect.com/science/article/pii/S1463500314000420

Marshall, D. P., Vogel, B. & Zhai, X. (2013), ‘Rossby rip currents’, Geophysical Research Letters

40(16), 4333–4337.

URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/grl.50842

Marshall, J., Scott, J. R., Romanou, A., Kelley, M. & Leboissetier, A. (2017), ‘The dependence

of the ocean’s moc on mesoscale eddy diffusivities: A model study’, Ocean Model. 111, 1–8.

Marshall, J., Shuckburgh, E., Jones, H. & Hill, C. (2006), ‘Estimates and implications of surface

eddy diffusivity in the southern ocean derived from tracer transport’, Journal of Physical

Oceanography 36(9), 1806–1821.

URL: https://doi.org/10.1175/JPO2949.1

McWilliams, J. C. (1977), ‘A note on a consistent quasigeostrophic model in a multiply con-

nected domain’, Dynamics of Atmospheres and Oceans 1(5), 427 – 441.

URL: http://www.sciencedirect.com/science/article/pii/0377026577900021

Nakamura, N. (1996), ‘Two-dimensional mixing, edge formation, and permeability diagnosed

in an area coordinate’, Journal of the Atmospheric Sciences 53(11), 1524–1537.

URL: https://doi.org/10.1175/1520-0469(1996)053¡1524:TDMEFA¿2.0.CO;2

Nakamura, N. (2008), ‘Sensitivity of Global Mixing and Fluxes to Isolated Transport Barriers’,

Journal of the Atmospheric Sciences 65(12), 3800–3818.

URL: https://doi.org/10.1175/2008JAS2641.1



BIBLIOGRAPHY 170

Naveira Garabato, A. C., Ferrari, R. & Polzin, K. L. (2011), ‘Eddy stirring in the southern

ocean’, Journal of Geophysical Research: Oceans 116(C9).

URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010JC006818

O’Dwyer, J., Williams, R., LaCasce, J. & Speer, K. (2000), ‘Does the Potential Vorticity

Distribution Constrain the Spreading of Floats in the North Atlantic?’, Journal of Physical

Oceanography 30(4), 721–732.

URL: http://dx.doi.org/10.1175/1520-0485(2000)030¡0721:DTPVDC¿2.0.CO;2

Onink, V., Wichmann, D., Delandmeter, P. & van Sebille, E. (2019), ‘The role of ekman

currents, geostrophy, and stokes drift in the accumulation of floating microplastic’, Journal

of Geophysical Research: Oceans 124(3), 1474–1490.

URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JC014547

Pierrehumbert, R. T. (1991), ‘Largescale horizontal mixing in planetary atmospheres’, Physics

of Fluids A 3(5), 1250–1260.

URL: http://scitation.aip.org/content/aip/journal/pofa/3/5/10.1063/1.858053

Prandtl, L. (1925), ‘7. bericht ber untersuchungen zur ausgebildeten turbulenz’, ZAMM - Jour-

nal of Applied Mathematics and Mechanics / Zeitschrift fr Angewandte Mathematik und

Mechanik 5(2), 136–139.

URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.19250050212

Reynolds, A. M. (1999), ‘A second-order lagrangian stochastic model for particle trajecto-

ries in inhomogeneous turbulence’, Quarterly Journal of the Royal Meteorological Society

125(557), 1735–1746.

URL: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49712555713

Reynolds, A. M. (2003), ‘Third-order lagrangian stochastic modeling’, Physics of Fluids

15(9), 2773–2777.

URL: https://doi.org/10.1063/1.1600732

Riha, S. & Eden, C. (2011), ‘Lagrangian and eulerian lateral diffusivities in zonal jets’, Ocean

Modelling 39(1), 114 – 124. Modelling and Understanding the Ocean Mesoscale and Subme-



BIBLIOGRAPHY 171

soscale.

URL: http://www.sciencedirect.com/science/article/pii/S1463500311000254

Rivire, P., Treguier, A. M. & Klein, P. (2004), ‘Effects of bottom friction on nonlinear equili-

bration of an oceanic baroclinic jet’, Journal of Physical Oceanography 34(2), 416–432.

URL: https://doi.org/10.1175/1520-0485(2004)034¡0416:EOBFON¿2.0.CO;2

Rodean, H. C. (1996), ‘Stochastic lagrangian models of turbulent diffusion’, Meteorological

Monographs 48, 1–84.

URL: https://doi.org/10.1175/0065-9401-26.48.1

Roundy, P. E. (2015), ‘On the interpretation of eof analysis of enso, atmospheric kelvin waves,

and the mjo’, Journal of Climate 28(3), 1148–1165.

URL: https://doi.org/10.1175/JCLI-D-14-00398.1

Rypina, I. I., Brown, M. G., Beron-Vera, F. J., Koçak, H., Olascoaga, M. J. & Udovydchenkov,
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Appendix A

Derivation of 2D-cubic spatial

interpolation

First, we construct the four one dimensional cubic polynomials that approximate the stream

function on the blue dashed lines in fig. 3.1. That is

ψyk(x) = ψyk(a) = Ak +Bka+ Cka
2 +Dka

3, (A.1)

where a = x− xi, ψyk(a) = ψ(yk, x) and k = i− 1, · · · , i+ 2.

These coefficients can be found analytically by constructing cubic Lagrange polynomials.

A one dimensional cubic Lagrange polynomial P (x) is expressed as follows:

P (x) =
i+2∑

k=i−1

ψ(xk)Lk(x), (A.2)

where

Lk(x) =
∏

i−1≤m≤i+2
m 6=k

x− xm
xk − xm

. (A.3)

Hence,
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Li−1(x) =
x− xi
xi−1 − xi

x− xi+1

xi−1 − xi+1

x− xi+2

xi−1 − xi+2

,

=
a

−1

a− 1

−2

a− 2

−3
,

=
−a(a− 1)(a− 2)

6
,

=
−a3 + 3a2 − 2a

6
.

Li(x) =
x− xi−1

xi − xi−1

x− xi+1

xi − xi+1

x− xi+1

xi − xi+2

,

=
1 + a

1

a− 1

−1

a− 2

−2
,

=
(1 + a)(a− 1)(a− 2)

2
,

=
a3 − 2a2 − a+ 2

2
.

Li+1(x) =
x− xi−1

xi+1 − xi−1

x− xi
xi+1 − xi

x− xi+2

xi+1 − xi+2

,

=
1 + a

2

a

1

a− 2

−1
,

=
−a(1 + a)(a− 2)

2
,

=
−a3 + a2 + 2a

2
.

Li+2(x) =
x− xi−1

xi+2 − xi−1

x− xi
xi+2 − xi

x− xi+1

xi+2 − xi+1

,

=
1 + a

3

a

2

a− 1

1
,

=
a(1 + a)(a− 1)

6
,

=
a3 − a

6
.

Substituting these values into the expression for P (x) gives:

P (x) = ψ(xi−1)
−a3 + 3a2 − 2a

6
+ ψ(xi)

a3 − 2a2 − a+ 2

2

+ ψ(xi+1)
−a3 + a2 + 2a

2
+ ψ(xi+2)

a3 − a
6

,

= ψ(xi) + a

(
−1

3
ψ(xi−1)− 1

2
ψ(xi) + ψ(xi+1) +

1

6
ψ(xi+2)

)
+ a2

(
1

2
ψ(xi−1)− ψ(xi) +

1

2
ψ(xi+1)

)
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+ a3

(
−1

6
ψ(xi−1) +

1

2
ψ(xi)−

1

2
ψ(xi+1) +

1

6
ψ(xi+2)

)
.

We wish to find four polynomials of this type that approximate ψ along the lines y =

yj−1, · · · , yj+2. So replacing ψ(x) with ψ(x, yk), k = j − 1, · · · j + 2 gives,

Ak = ψ(xi, yk), (A.4)

Bk = −1

3
ψ(xi−1, yk)−

1

2
ψ(xi, yk) + ψ(xi+1, yk)−

1

6
ψ(xi+2, yk), (A.5)

Ck =
1

2
ψ(xi−1, yk)− ψ(xi, yk) +

1

2
ψ(xi+1, yk), (A.6)

Dk = −1

6
ψ(xi−1, yk) +

1

2
ψ(xi, yk)−

1

2
ψ(xi+1, yk) +

1

6
ψ(xi+2, yk). (A.7)

Now we wish to construct a one dimensional polynomial along the red dashed line that will

be expressed in terms of the above four cubic polynomials, that is

ψ(x, y) = α + βb+ γb2 + δb3, (A.8)

where b = y − yj and α = α(ψ(x, yj−1), · · · , ψ(x, yj+2)), similarly for β, γ, δ. These coefficients

are constructed in exactly the same way as above, by using cubic Lagrange polynomials.

α = ψ(x, yj) = ψyj(x), (A.9)

β = −1

3
ψyj−1

(x)− 1

2
ψyj(x) + ψyj+1

(x)− 1

6
ψyj+2

(x), (A.10)

γ =
1

2
ψyj−1

(x)− ψyj(x) +
1

2
ψyj+1

(x), (A.11)

δ = −1

6
ψyj−1

(x) +
1

2
ψyj(x)− 1

2
ψyj+1

(x) +
1

6
ψyj+2

(x), (A.12)

where we substitute in the expressions provided by eq. (A.1).

Now we have a polynomial approximation for ψ and can analytically differentiate it to find

u and v at (x, y):

u = −∂ψ
∂y

= −∂ψ
∂b

= −β − 2γb− 3δb2, (A.13)
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v =
∂ψ

∂x
=
∂ψ

∂a
=
∂α

∂a
+ b

∂β

∂a
+ b2∂γ

∂a
+ b3 ∂δ

∂a
. (A.14)



Appendix B

2D-cubic code

B.1 Calculating the first set of coefficients

The subroutine calculating 1D cubic polynomial coefficients across the ii × jj grid. Each set of

cubic polynomial coefficients a,b,c,d are calculated for each grid coordinate of y. (i.e. we get ii

× jj 1D cubic polynomials defined in the y-direction)

subroutine c u b i c c o e f f x ( i i , j j , ps i , a , b , c , d )

c INPUT : i i , j j : g r i d s i z e

c INPUT : p s i ( i i , j j ) : stream func t i on snapshot

c OUTPUT : a ( i i , j j ) , b ( i i , j j ) , c ( i i , j j ) , d ( i i , j j ) : polynomial c o e f f i c i e n t s

implicit none

integer i i , j j , i , j , n , i c (4 )

real ∗8 p s i ( i i , j j )

& , a ( i i , j j ) , b ( i i , j j )

& , c ( i i , j j ) , d ( i i , j j )
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do i = 1 , i i

c i denotes the g r id po int to the l e f t o f the i n t e r p o l a t i o n po int in x

do j = 1 , j j

c j denotes the g r id po int above the i n t e r p o l a t i o n po int in y

c determine the 4 data po in t s used to c a l c u l a t e the cubic polynomial

do n = 1 ,4

i c (n) = i − 2 + n

i f ( i c (n) <= 0) then

i c (n) = i i + i c (n)

e l s e i f ( i c (n) > i i ) then

i c (n) = i c (n) − i i

endif

enddo

c c o e f f i c i e n t s f o r the 4 1−D polynomia ls de f ined on the g r id l i n e s

c j =j c ( 1 ) , j c ( 2 ) , j c ( 3 ) , j c (4 )

a ( i , j ) = p s i ( i c ( 2 ) , j )

b ( i , j )= −p s i ( i c ( 1 ) , j )/3 − p s i ( i c ( 2 ) , j )/2

& +p s i ( i c ( 3 ) , j ) − p s i ( i c ( 4 ) , j )/6

c ( i , j ) = p s i ( i c ( 1 ) , j )/2 − p s i ( i c ( 2 ) , j )

& + p s i ( i c ( 3 ) , j )/2

d( i , j ) = −p s i ( i c ( 1 ) , j )/6 + p s i ( i c ( 2 ) , j )/2

& −p s i ( i c ( 3 ) , j )/2 + p s i ( i c ( 4 ) , j )/6

enddo

enddo

end subroutine
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B.2 Finding cubic polynomials in terms of x at each y

coordinate

The subroutine that takes the grid size: ii x jj, the snapshot streamfunction and the x coordinate

of the interpolation point and returns the cubic polynomials approximated along x across the

whole y direction in all possible locations of the y coordinate of the interpolation point. It

takes a, b ,c and d from the previous subroutine as input (it avoids having to continuously

recalculate the coefficients).

subroutine c ub i c p o l y x ( i i , j j , x , y , a , b , c , d , p s i i n t e r p x )

c INPUT : i i , j j : g r i d s i z e

c INPUT : x , y : the i n t e r p o l a t i o n po int va lue s

c INPUT : a ( i i , j j ) , b ( i i , j j ) , c ( i i , j j ) , d ( i i , j j ) : c o e f f i c i e n t s

c OUTPUT : p s i i n t e r p x (4 ) : eva luated polynomial at the 4

c surrounding y coo rd ina t e s

implicit none

integer i i , j j , i , j , xc , j c ( 4 ) , yc

real ∗8 x , p s i i n t e r p x ( 4 ) , ax , y

real ∗8 a ( i i , j j ) , b ( i i , j j )

& , c ( i i , j j ) , d ( i i , j j )

c g r i d po int to the l e f t o f the i n t e r p o l a t i o n po int

xc = int ( x ) + 1

ax = x − int ( x )
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yc = int ( y ) + 1

do i = 1 ,4

j c ( i ) = yc − 2 + i

i f ( j c ( i )> j j ) then

j c ( i ) = j c ( i ) − j j

endif

i f ( j c ( i )<=0) then

j c ( i ) = j c ( i ) + j j

endif

enddo

do i = 1 ,4

p s i i n t e r p x ( i ) = a ( xc , j c ( i ) ) + b( xc , j c ( i ) )∗ ax

& + c ( xc , j c ( i ) )∗ ax∗∗2

& + d( xc , j c ( i ) )∗ ax∗∗3

enddo

return

end subroutine

B.3 Finding the second set of coefficients defined in terms

of x

The subroutine that takes the grid size, psi x, from the previous subroutine and the x coor-

dinate of the interpolation point and constructs the coefficients for the cubic polynomial that
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approximates the streamfunction on the line x.

subroutine c u b i c c o e f f y ( i i , j j , p s i x , alpha , beta , gamma, de l t a )

c INPUT: i i , j j : g r i d s i z e

c INPUT: p s i x (4 ) : output o f cu b i c p o l y x

c OUTPUT : alpha , beta , gamma, de l t a : cub ic polynomial c o e f f i c i e n t s

c o f the f i n a l 2D cubic polynomial

implicit none

integer i i , j j , i , j , n , j c (4 )

real ∗8 p s i x (4 )

& , alpha , beta , gamma, de l t a

alpha = p s i x (2 )

beta = − p s i x (1)/3 − p s i x (2)/2 + p s i x (3 )

& −p s i x (4)/6

gamma = p s i x (1)/2 − p s i x (2 ) + p s i x (3)/2

de l t a = − p s i x (1)/6 + p s i x (2)/2

& − p s i x (3)/2 + p s i x (4)/6

return

end subroutine
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B.4 Evaluating the 2D cubic polynomial to find the stream

function

The subroutine that returns the value of psi approximated at the interpolation point (x,y)

called psi interp.

subroutine c u b i c i n t e r p ( i i , j j , p s i x , y , p s i i n t e r p )

c INPUT : i i , j j : g r i d s i z e

c INPUT : p s i x (4 ) : output o f cu b i c p o l y x

c INPUT : y : va lue o f i n t e r p o l a t i o n po int y

c OUTPUT : p s i i n t e r p : p s i (x , y ) i n t e r p o l a t e d at x , y

implicit none

integer i i , j j , yc

real ∗8 p s i x ( 4 ) , x , y , p s i i n t e r p , ay

real ∗8 alpha , beta , gamma, de l t a

ay = y − int ( y )

yc = int ( y ) + 1

ca l l c u b i c c o e f f y ( i i , j j , p s i x , alpha , beta , gamma, de l t a )

p s i i n t e r p = alpha + beta∗ay + gamma∗ay∗∗2

& + de l t a ∗ay∗∗3

return
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end subroutine

B.5 Finding the velocity

The subroutine that returns the velocities given the coefficients.

subroutine ve l ( i i , j j , p s i x , a , b , c , d , x , y , u , v )

implicit none

c INPUT : i i , j j : g r i d s i z e

c INPUT : p s i x : output o f c ub i c p o l y x

c INPUT : a , b , c , d : polynomial c o e f f i c i e n t s

c INPUT : x , y : i n t e r p o l a t i o n po in t s

c OUTPUT : u , v : v e l o c i t y approximated at x , y

integer i i , j j , yc , xc , j c ( 4 ) , i

real ∗8 x , y , u , v , p s i x ( 4 ) , ay , ax

real ∗8 a ( i i , j j ) , b ( i i , j j )

& , c ( i i , j j ) , d ( i i , j j )

real ∗8 alpha , beta , gamma, de l t a

real ∗8 d alpha , d beta , d gamma , d d e l t a

ca l l c u b i c c o e f f y ( i i , j j , p s i x , alpha , beta , gamma, de l t a )

yc = int ( y ) + 1

ay = y − int ( y )

xc = int ( x ) + 1
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ax = x − int ( x )

do i = 1 ,4

j c ( i ) = yc − 2 + i

i f ( j c ( i ) <= 0) then

j c ( i ) = j j + j c ( i )

e l s e i f ( j c ( i ) > j j ) then

j c ( i ) = j c ( i ) − j j

endif

enddo

u = −(beta + 2∗gamma∗ay + 3∗ de l t a ∗ay ∗∗2)

d alpha = b( xc , j c ( 2 ) ) + 2∗ c ( xc , j c ( 2 ) )∗ ax + 3∗d( xc , j c ( 2 ) )∗ ax∗∗2

d beta = (−b( xc , j c ( 1 ) )/3 − b( xc , j c ( 2 ) )/2

& + b( xc , j c (3))−b( xc , j c ( 4 ) ) / 6 )

& + 2∗(−c ( xc , j c ( 1 ) )/3 − c ( xc , j c (2 ) )/2

& + c ( xc , j c ( 3 ) ) − c ( xc , j c ( 4 ) ) /6 )∗ ax

& + 3∗(−d( xc , j c ( 1 ) )/3 − d( xc , j c ( 2 ) )/2

& + d( xc , j c ( 3 ) ) − d( xc , j c ( 4 ) ) /6 )∗ ax∗∗2

d gamma = (b( xc , j c ( 1 ) )/2 − b( xc , j c ( 2 ) ) + b( xc , j c ( 3 ) ) / 2 )

& + 2∗( c ( xc , j c (1 ) )/2 − c ( xc , j c ( 2 ) ) + c ( xc , j c ( 3 ) ) /2 )∗ ax

& + 3∗(d( xc , j c (1 ) )/2 − d( xc , j c ( 2 ) ) + d( xc , j c ( 3 ) ) /2 )∗ ax∗∗2

d d e l t a = (−b( xc , j c ( 1 ) )/6 + b( xc , j c ( 2 ) )/2

& − b( xc , j c ( 3 ) )/2 + b( xc , j c ( 4 ) ) / 6 )
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& + 2∗(−c ( xc , j c ( 1 ) )/6 + c ( xc , j c ( 2 ) )/2

& − c ( xc , j c (3 ) )/2 + c ( xc , j c ( 4 ) ) /6 )∗ ax

& + 3∗(−d( xc , j c ( 1 ) )/6 + d( xc , j c ( 2 ) )/2

& − d( xc , j c ( 3 ) )/2 + d( xc , j c ( 4 ) ) /6 )∗ ax∗∗2

v = ( d alpha + ay∗d beta + d gamma∗ay∗∗2 + d d e l t a ∗ay ∗∗3)

return

end subroutine

B.6 Algorithm

1. At each time step, call cubic coeff x for the instantaneous stream function to return

the coefficients a, b, c and d which are defined for every grid point.

2. For each particle:

(a) Call cubic poly x taking the interpolation point and cubic coefficients as input, and

returning ψyj(x) where yj, j = 1, · · · , 4 are the grid points in y that surround the

interpolation point.

(b) Call vel taking ψyj(x), the cubic coefficients and the interpolation point as input to

return the velocity approximated at the interpolation point.



Appendix C

Derivation of bicubic spatial

interpolation

Let A,Ψ,X,Y all be 4× 4 matrices where

[A]k,l = akl (C.1)

X =



1 xi−1 x2
i−1 x3

i−1

1 xi x2
i x3

i

1 xi+1 x2
i+1 x3

i+1

1 xi+2 x2
i+2 x3

i+2


, Y =



1 1 1 1

yj−1 yj yj+1 yj+2

y2
j−1 y2

j y2
j+1 y2

j+2

y3
j−1 y3

j y3
j+1 y3

j+2


,

[Ψ]k,l = ψ(xi+k−2, yj+l−2). (C.2)

We get the following matrix equation:

Ψ = (XA)Y, (C.3)

which approximates the streamfunction as a bicubic polynomial. In order to find A, we

rearrange to get:

A = X−1(ΨY−1). (C.4)
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As before, we can now analytically differentiate these polynomials to find the velocity

components:

u(x, y) = −
(

1 x x2 x3

)
A

(
0 1 2y 3y2

)ᵀ

, (C.5)

v(x, y) =

(
0 1 2x 3x2

)
A

(
1 y y2 y3

)ᵀ

. (C.6)
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Bicubic code

D.1 Calculating the matrix A of coefficients

The subroutine that returns ii × jj, 4× 4 matrices of bicubic polynomial coefficients.

subroutine A matrix ( i i , j j , ps i , A mat )

c INPUT : i i , j j : g r i d s i z e

c INPUT : p s i ( i i , j j ) : stream func t i on

c OUTPUT : A mat ( i i , j j , 4 , 4 ) : 4 X 4 matrix o f c o e f f i c i e n t s s to r ed at each

c g r id po int

implicit none

integer i i , j j , i , j , k , n ,m, i c ( 4 ) , j c (4 )

real ∗8 A mat ( i i , j j , 4 , 4 )

& , x mat ( 4 , 4 ) , y mat ( 4 , 4 ) , ps i mat (4 , 4 )

& , yc ( 4 ) , xc ( 4 ) , x inv ( 4 , 4 ) , y inv ( 4 , 4 ) , p s i g r i d (4 , 4 )

& , p s i ( i i , j j )
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& ,B(4 , 4 )

do i = 1 , i i

do j = 1 , j j

do k = 1 ,4

i c ( k ) = i + k − 2

j c ( k ) = j + k − 2

xc ( k ) = d f l o a t ( i c ( k ) )

i f ( i c ( k)<=0) then

i c ( i ) = i i+i c ( k )

endif

i f ( i c ( k)> i i ) then

i c ( k ) = i c ( k ) − i i

endif

yc ( k ) = d f l o a t ( j c ( k ) )

i f ( j c ( k)<=0) then

j c ( k ) = j j + j c ( k )

endif

i f ( j c ( k ) > j j ) then

j c ( k ) = j c ( k ) − j j

endif

enddo

do n = 1 ,4

do m = 1 ,4
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X mat (n ,m) = xc (n )∗∗ (m−1)

Y mat (n ,m) = yc (m)∗∗ (n−1)

enddo

enddo

X inv = inv (X mat )

Y inv = inv (Y mat )

do n = 1 ,4

do m = 1 ,4

p s i g r i d (m, n) = p s i ( i c (m) , j c (n ) )

enddo

enddo

B = matmult ( p s i g r i d , Y inv )

A mat ( i , j , : , : ) = matmult ( X inv ,B)

enddo

enddo

end subroutine
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D.2 Finding the velocity

The subroutine that returns the velocity at the interpolation point by taking the matrix of

coefficients as input.

subroutine b i cub i c ( i i , j j , A mat , x , y , u , v )

c INPUT : i i , j j

c INPUT : A mat ( i i , j j , 4 , 4 )

c INPUT : x , y : i n t e r p o l a t i o n po int

c OUPUT : u , v : v e l o c i t i e s

implicit none

integer i i , j j , i , j , k

real ∗8 A mat ( i i , j j , 4 , 4 )

& ,x , y , u , v , x c o l ( 1 , 4 ) , y c o l ( 4 ) , d i f f y (4 )

& , d i f f x ( 1 , 4 ) , XA( 1 , 4 ) , d i f f XA (1 , 4 )

do k =1,4

x c o l (1 , k ) = x∗∗(k−1)

y c o l ( k ) = y∗∗(k−1)

enddo

d i f f y (1 ) = 0 .

d i f f x (1 , 1 ) = 0 .
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do k = 2 ,4

d i f f y ( k ) = (k−1)∗y∗∗(k−2)

d i f f x (1 , k ) = (k−1)∗x∗∗(k−2)

enddo

XA = matmult ( x co l , A mat ( int ( x)+1 , int ( y ) + 1 , : , : ) )

d i f f XA = matmult ( d i f f x , A mat ( int ( x)+1 , int ( y ) + 1 , : , : ) )

u = −dot product (XA( 1 , : ) , d i f f y )

v = dot product ( di f f XA ( 1 , : ) , y c o l )

end subroutine

end module MOD bicubic

D.3 Algorithm

1. For each time step, call A matrix, taking the instantaneous stream function as input, to

return A.

2. For each particle, call bicubic, taking the matrix A as input, and the interpolation points

(x, y) to return the approximated velocity (u, v) at the interpolation point.
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Lagrangian Statistics Figures

In this appendix we include multi-panel figures referenced in Chapter 4.
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E.1 Single Particle Dispersion

(a) Bin 1 (b) Bin 2

(c) Bin 3 (d) Bin 4

(e) Bin 5 (f) Bin 6
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(g) Bin 7 (h) Bin 8

(i) Bin 9 (j) Bin 10

Figure E.1: Single-Particle Dispersion (km2) against time (days) for Full, EO and FFE trajec-
tories in the coherent jet. The top row of each panel is the top layer and the bottom row is
the bottom layer. The left column of each panel is the zonal dispersion and the right is the
meridional dispersion. Each figure panel represents a uniform zonal bin, where bin 1 indicates
the bin starting at y = 0.
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(a) Bin 1 (b) Bin 2

(c) Bin 3 (d) Bin 4

(e) Bin 5 (f) Bin 6
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(g) Bin 7 (h) Bin 8

(i) Bin 9 (j) Bin 10

Figure E.2: The same as fig. E.1 but for the latent jet.
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E.2 Log-log Plots of Single Particle Dispersion

(a) Bin 1 (b) Bin 2

(c) Bin 3 (d) Bin 4

(e) Bin 5 (f) Bin 6
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(g) Bin 7 (h) Bin 8

(i) Bin 9 (j) Bin 10

Figure E.3: A log-log plot for the Single-Particle Dispersion (km2) against time (days) for Full,
EO and FFE trajectories in the coherent jet. The figure layout is the same as fig. E.1. The
dashed black lines representing diffusive and ballistic growth are included for comparison. The
solid vertical black line is TL, which is meant to represent a rough separation between the two
growth rates.
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(a) Bin 1 (b) Bin 2

(c) Bin 3 (d) Bin 4

(e) Bin 5 (f) Bin 6
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(g) Bin 7 (h) Bin 8

(i) Bin 9 (j) Bin 10

Figure E.4: The same as fig. E.3 but for the latent jet.
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E.3 Lagrangian Autocorrelation function

(a) Bin 1 (b) Bin 2

(c) Bin 3 (d) Bin 4

(e) Bin 5 (f) Bin 6
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(g) Bin 7 (h) Bin 8

(i) Bin 9 (j) Bin 10

Figure E.5: The normalised Lagrangian Autocorrelation Function for Full, EO and FFE tra-
jectories in the coherent jet. The Figure panels are laid out the same way as in fig. E.1.
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(a) Bin 1 (b) Bin 2

(c) Bin 3 (d) Bin 4

(e) Bin 5 (f) Bin 6
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(g) Bin 7 (h) Bin 8

(i) Bin 9 (j) Bin 10

Figure E.6: The same as fig. E.5 but for the latent jet.
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E.4 Calculation of TL

(a) Bin 1 (b) Bin 2

(c) Bin 3 (d) Bin 4

(e) Bin 5 (f) Bin 6
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(g) Bin 7 (h) Bin 8

(i) Bin 9 (j) Bin 10

Figure E.7: R fitted to exponential decay for FFE trajectories in the coherent jet. Figure
layout is the same as in fig. E.1. The resulting estimated Lagrangian integral time-scale (days)
is printed for each figure, estimated as the time at which the fitted curve reaches e−1.
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(a) Bin 1 (b) Bin 2

(c) Bin 3 (d) Bin 4

(e) Bin 5 (f) Bin 6
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(g) Bin 7 (h) Bin 8

(i) Bin 9 (j) Bin 10

Figure E.8: The same as fig. E.7 but for the latent jet.
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E.5 PV-Mapped Dispersion

(a) Coherent jet.
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(b) Latent jet.

Figure E.9: Comparison of Dy(t) (km2) against the PV-mapped dispersion against time (days)
for the two jet regimes for each bin. Only the top layer and meridional direction are shown.
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E.6 PV-Mapped Lagrangian Autocorrelation Function

(a) Coherent Jet
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(b) Latent Jet

Figure E.10: The normalised PV-mapped autocorrelation function for each bin for the two jet
regimes plotted against the time lag (days). It is compared against a fitted exponential with
the Lagrangian integral time-scale, calculated as the decay rate, displayed for each figure. Only
the top layer and meridional direction are shown.
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Kinematic Model Figures

F.1 Single Particle Dispersion for ‘How Many EOFs do

we Need to Capture Lagrangian Dispersion?’
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(a) Bin 1 (b) Bin 2

(c) Bin 3 (d) Bin 4

(e) Bin 5 (f) Bin 6
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(g) Bin 7 (h) Bin 8

(i) Bin 9 (j) Bin 10

Figure F.1: Single-Particle Dispersion (km2) against time (days) for each bin for different
numbers of EOFs for the coherent jet.
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(a) Bin 1 (b) Bin 2

(c) Bin 3 (d) Bin 4

(e) Bin 5 (f) Bin 6
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(g) Bin 7 (h) Bin 8

(i) Bin 9 (j) Bin 10

Figure F.2: Single-Particle Dispersion (km2) against time (days) for each bin for different
numbers of EOFs for the latent jet.

F.2 Single Particle Dispersion for ‘Deducing the Role of

EOF Patterns in Lagrangian Dispersion’.
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(a) Bin 1 (b) Bin 2

(c) Bin 3 (d) Bin 4

(e) Bin 5 (f) Bin 6
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(g) Bin 7 (h) Bin 8

(i) Bin 9 (j) Bin 10

Figure F.3: Single-Particle Dispersion (km2) against time (days) for each bin where different
EOF pairs are deducted from the full field in the coherent jet.
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(a) Bin 1 (b) Bin 2

(c) Bin 3 (d) Bin 4

(e) Bin 5 (f) Bin 6
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(g) Bin 7 (h) Bin 8

(i) Bin 9 (j) Bin 10

Figure F.4: Single-Particle Dispersion (km2) against time (days) for each bin where different
EOF pairs are deducted from the full field in the latent jet.

F.3 Figure for ‘Investigating the Role of Half-Wavelength

Rossby Waves’
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(a) Bin 1 (b) Bin 2

(c) Bin 3 (d) Bin 4
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(g) Bin 7 (h) Bin 8

(i) Bin 9 (j) Bin 10

Figure F.5: Comparing the single-particle dispersion (km2) against time (days) for each bin for
the kinematic field with and without the background flow for the coherent jet.
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(a) Bin 1 (b) Bin 2

(c) Bin 3 (d) Bin 4

(e) Bin 5 (f) Bin 6
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(g) Bin 7 (h) Bin 8

(i) Bin 9 (j) Bin 10

Figure F.6: Comparing the single-particle dispersion (km2) against time (days) for each bin for
the kinematic field with and without the background flow for the latent jet.



Appendix G

Deriving the Stokes Drift for Half

Rossby Waves

The Stokes’ Drift velocity is given by (van den Bremer & Breivik 2018a):

uS = ūL − ūE, (G.1)

where the overbar denotes the average, ūL denotes the Lagrangian velocity and ūE denotes the

Eulerian velocity.

For simplicity let’s express the half Rossby wave stream functioneq. (5.3) as follows:

ψ(x, y, t) = f(x, y) cos(kx− ωt), (G.2)

where f(x, y) represents the amplitude of the Rossby wave and kc = ω. We get the eulerian

velocity components by using the non-divergent property of the stream function:

uE = −∂f(x, y)

∂y
cos(kx− ωt), (G.3)

vE =
∂f(x, y)

∂x
cos(kx− ωt)− f(x, y)k sin(kx− ωt). (G.4)
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We can approximate the Lagrangian velocity of a particle located at ξ = (ξx, ξy) using a

Taylor expansion about ξ:

uL ≈ uE +
∂uE
∂x

(ξx − x0) +
∂uE
∂y

(ξy − y0) , (G.5)

vL ≈ vE +
∂vE
∂x

(ξx − x0) +
∂vE
∂y

(ξy − y0) . (G.6)

(G.7)

We can find the particle displacements ξx and ξy as follows:

dξx
dt

= uE(x, t), =⇒ (G.8)

ξx = x0 +
1

ω

∂f

∂y
sin(kx− ωt). (G.9)

and

dξy
dt

= vE(x, t), =⇒ (G.10)

ξy = y0 −
1

ω

∂f

∂x
sin(kx− ωt)− 1

ω
f(x, y)k cos(kx− ωt). (G.11)

Focusing on the zonal direction, and substituting ξx and uL into eq. (G.1):

uS =
∂2ξx
∂x∂t

(ξx − x0) +
∂2ξx
∂y∂t

(ξy − y0) (G.12)

=
∂2ξx
∂x∂t

(
1

ω

∂f

∂y
sin(kx− ωt)

)
+
∂2ξx
∂y∂t

(
− 1

ω

∂f

∂x
sin(kx− ωt)− 1

ω
f(x, y)k cos(kx− ωt)

)
.

(G.13)

Firstly, let’s evaluate the partial derivatives of ξx:
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∂2ξx
∂x∂y

= − ∂2f

∂t∂x
cos(kx− ωt) + k

∂f

∂y
sin(kx− ωt), (G.14)

∂2ξx
∂y∂t

= −∂
2f

∂y2
cos(kx− ωt). (G.15)

The long time average of cos(g(x, y)) sin(h(x, y)) is 0, so we can simplify uS as follows:

uS = −k
ω

(
∂f

∂y

)2

sin2(kx− ωt) +
k

ω
f(x, y)

∂2f

∂y2
cos2(kx− ωt). (G.16)

As t→∞, sin2(kx− ωt)→ 1
2
, hence:

uS =
k

2ω

(
∂f

∂y

)2

+
k

2ω
f(x, y)

∂2f

∂y2
, (G.17)

=
k

4ω

∂2

∂y2
f 2. (G.18)

Similarly for the meridional direction, we obtain:

vS =
k

4ω

∂2

∂y∂x
f 2. (G.19)
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Derivation of the Markov-0 Model

This is the simplest stochastic model in our hierarchy, alternatively known as a Markov dis-

placement process. Here, a stochastic term is added to the particle position x only resulting in

the 1D stochastic differential equation:

dxi = ai(x, t)dt+ bii(x, t)dWj(t). (H.1)

We follow the methodology in Boughton et al. (1987).

Using eq. (6.3), we obtain:

d 〈xi〉
dt

= ai(x, t), (H.2)

and using eq. (6.4):

〈(dxi − 〈dxi〉)2〉
dt

= 2Kii = b2
ii. (H.3)

We only need to consider the zonal and meridional 1D fokker-planck equations indepen-

dently, as we are assuming that our dispersion tensor is strictly diagonal, that is, the off-diagonal

components of Kij are zero. Therefore, let us rewrite eq. (6.6) for the 1D case for the Markov

displacement process:

∂p(x, t)

∂t
+

∂

∂xi
(aip(x, t))−

1

2

∂2

∂x2

(
b2
iip(x, t)

)
= 0. (H.4)
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We know that the diffusion term, bii =
√

2Kii. It still remains to find the drift term ai(x, t).

We note that the ensemble mean of the tracer concentration, 〈c〉, from4.3 satisfies eq. (H.4),

where

ai(x, t) =
∂Ki

∂xi
+ ui. (H.5)

Therefore the 1D SDE for the 0th order Markov Model is:

xi(t+ dt) = xi(t) +

(
ui +

∂Ki

∂xi

)
dt+

√
2KidW (t). (H.6)
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Derivation of the Markov-1 Model

We follow the methodology described in Rodean (1996) in order to derive the first order Markov

model. Much like for the diffusion model, we start with a 1D SDE, however in this case the

stochastic process is the velocity:

dui = ai(u,x, t)dt+ bi(u,x, t)dWj(t). (I.1)

The 1D Fokker-Planck equation for the Markov-1 model is:

∂p

∂t
+
∂(uip)

∂xi
= −∂(aip)

∂ui
+

∂2

∂u2
i

(
1

2
b2
i p

)
. (I.2)

The Gaussian 1D Eulerian probability distribution for the velocity is:

pE(ui, xi, t) =
1√

2πσii
exp

(
−1

2

(
ui
σii

)2
)
. (I.3)

In order for the well-mixedness condition to be satisfied, the Lagrangian and Eulerian

probability distributions for the velocity must be equivalent, that is, pE ∼ pL. From now on,

we write p to express pE, and pi = p(ui, xi, t).

Taking the logarithm of eq. (I.3) we get:
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ln(pi) = −1

2
ln(2π)− ln(σii)−

1

2

(
ui
σii

)2

. (I.4)

then taking the derivative with respect to the velocity ui, with respect to time and with

respect to xi respectively:

∂ ln pi
∂ui

= − ui
σ2
ii

, (I.5)

∂ ln pi
∂t

= −∂ lnσii
∂t

− u2
i

2

∂σ−2
ii

∂t
, (I.6)

∂ ln pi
∂xi

= −∂ lnσii
∂xi

− u2
i

2

∂σ−2
ii

∂xi
. (I.7)

The stochastic random forcing amplitude is defined it be:

b2
i =

2σ2
ii

TL
, (I.8)

where TL is the first order fading memory tensor. See Rodean (1996) for details on the

derivation.

By integrating eq. (I.2) with respect to the velocity ui we get:

aipi =
∂

∂ui

(
1

2
b2
i pi

)
+ Φi, (I.9)

where

∂Φi

∂ui
= −∂ρ

∂t
− ∂uipi

∂xi
(I.10)

In order the satisfy the well mixedness condition (see Thomson (1987) for further details),

as |ui| → ∞,Φi → 0. From eq. (I.9), we get:

ai =
1

pi

∂

∂ui

(
b2
i

2
pi

)
+

Φi

pi
. (I.11)
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From eq. (I.8), we know that bi is independent of the Lagrangian velocity ui, and using

eq. (I.5):

1

pi

∂pi
∂ui

=
∂ ln pi
∂ui

= − ui
σ2
ii

. (I.12)

Hence

ai = −uib
2
i

2σ2
ii

+
φi
pi

= − ui
TL

+
φi
pi
. (I.13)

Re-writing eq. (I.10) and applying eq. (I.6) and eq. (I.7) we get:

1

pi

∂φi
∂ui

= −∂ ln pi
∂t

− ui
∂ ln pi
∂xi

, (I.14)

=
∂ lnσii
∂t

+ ui
∂ lnσii
∂xi

+
u2
i

2

∂σ−2
ii

∂t
+
u3
i

2

∂σ−2
ii

∂xi
. (I.15)

Therefore, we can express φi/pi as a quadratic equation:

φi
pi

= α + βui + γu2
i . (I.16)

Differentiating with respect to ui:

∂

∂ui

(
φi
pi

)
=

1

pi

∂φi
∂ui

+ φi
∂

∂ui

(
1

pi

)
, (I.17)

=
1

pi

∂φi
∂ui
− φi

1

p2
i

∂pi
∂ui

, (I.18)

=
1

pi

∂φi
∂ui

+ φi
1

pi

∂ ln pi
∂ui

, (I.19)

=
1

pi

∂φi
∂ui

+
φi
pi

ui
σ2
ii

. (I.20)

Differentiating eq. (I.16):
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∂

∂ui

(
φi
pi

)
= β + 2γui, (I.21)

hence, combing the above expressions

1

pi

∂φi
∂ui

= β + 2γui −
φi
pi

ui
σ2
ii

, (I.22)

= β + 2γui − (α + βui + γu2
i )
ui
σ2
ii

, (I.23)

= β + ui

(
2γ − α

σ2
ii

)
− u2

i

(
β

σ2
ii

)
− γ u

3
i

σ2
ii

. (I.24)

Therefore, matching up coefficients:

β =
∂ lnσii
∂t

, (I.25)

2γ − α

σ2
ii

=
∂ lnσii
∂xi

, (I.26)

− β

σ2
ii

=
1

2

∂σ−2
ii

∂t
, (I.27)

− γ

σ2
ii

=
1

2

∂σ−2
ii

∂xi
. (I.28)

Focusing on γ:

∂σ−2
ii

∂xi
= − 2

σ3
ii

∂σii
∂xi

= − 2

σ2
ii

∂ lnσii
∂xi

. (I.29)

Hence

γ =
∂ lnσii
∂xi

, (I.30)

and

α = σ2
ii

∂ lnσii
∂xi

. (I.31)
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Combining all the above results, we get:

φi
pi

= σ2
ii

∂ lnσii
∂xi

+ ui
∂ lnσii
∂t

+ u2
i

∂ lnσii
∂xi

. (I.32)

Expressing the above in terms of partial derivatives of σ2
ii instead of lnσii:

φi
pi

=
1

2

∂σ2
ii

∂xi
+

1

2σ2
ii

(
∂σ2

ii

∂t

)
ui +

1

2σ2
ii

(
∂σ2

ii

∂xi

)
u2
i . (I.33)

Substituting the above into eq. (I.13), we obtain the following 1-D SDE governing the

random flight velocity:

u′i(t+ dt) = u′i(t)−
u′i
TL
dt+

1

2

(
1 +

(
u′i
σii

)2
)
∂σ2

ii

∂xi
dt+

(
2σ2

ii

TL

)1/2

dW (t). (I.34)



Appendix J

Markov Model Figures

J.1 Single Particle Dispersion for a Markov Models com-

paring Diffusivity Estimates

J.1.1 Markov-0 Model
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(a) Bin 1 (b) Bin 2

(c) Bin 3 (d) Bin 4

(e) Bin 5 (f) Bin 6
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(g) Bin 7 (h) Bin 8

(i) Bin 9 (j) Bin 10

Figure J.1: Single-Particle Dispersion (km2) against time (days) for the Diffusion Model for

the coherent jet comparing use of diffusivity calculated from the SPD or from the as σ2
iiT

(i)
L .

Demonstrates SPD gives a more accurate asymptotic diffusivity estimate.
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(a) Bin 1 (b) Bin 2

(c) Bin 3 (d) Bin 4

(e) Bin 5 (f) Bin 6
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(g) Bin 7 (h) Bin 8

(i) Bin 9 (j) Bin 10

Figure J.2: Single-Particle Dispersion (km2) against time (days) for the Diffusion Model for the

latent jet comparing use of diffusivity calculated from the SPD or from σ2
iiT

(i)
L . Demonstrates

SPD gives a more accurate asymptotic diffusivity estimate.
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J.1.2 Markov-1 Model

(a) Bin 1 (b) Bin 2

(c) Bin 3 (d) Bin 4

(e) Bin 5 (f) Bin 6
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(g) Bin 7 (h) Bin 8

(i) Bin 9 (j) Bin 10

Figure J.3: Single-Particle Dispersion (km2) against time (days) for the Markov-1 Model for
the coherent jet comparing use of σ calculated directly from the Lagrangian trajectories or from
K and T iL. SPD method is more accurate.
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(a) Bin 1 (b) Bin 2

(c) Bin 3 (d) Bin 4

(e) Bin 5 (f) Bin 6
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(g) Bin 7 (h) Bin 8

(i) Bin 9 (j) Bin 10

Figure J.4: Single-Particle Dispersion (km2) against time (days) for the Markov-1 Model for
the latent jet comparing use of σ calculated directly from the Lagrangian trajectories or from
K and T iL. SPD method is more accurate.


